

	
	
	
	

CRACKING	THE
PM	INTERVIEW

How	to	Land	a	Product	Manager
Job	in	Technology

		
	
	

Also	by	Gayle	Laakmann	McDowell

Cracking	the	Coding	Interview
150	Programming	Questions	and	Solutions

The	Google	Resume
How	to	Prepare	for	a	Career	and	Land	a	Job	at

Apple,	Microsoft,	Google,	or	any	Top	Tech	Company

CRACKING	THE
PM	INTERVIEW

	
How	to	Land	a	Product	Manager

Job	in	Technology
	
	

GAYLE	LAAKMANN	MCDOWELL
Founder	and	CEO,	CareerCup.com

	
JACKIE	BAVARO
Product	Manager,	Asana

	
	

CareerCup,	LLC
Palo	Alto,	CA

		
	

CRACKING	THE	PM	INTERVIEW

Copyright	©	2014	by	CareerCup,	LLC.

All	 rights	 reserved.	 No	 part	 of	 this	 book	 may	 be	 used	 or	 reproduced	 in	 any
manner	 without	 written	 permission	 except	 in	 the	 case	 of	 brief	 quotations	 in
critical	articles	or	reviews.

Published	by	CareerCup,	LLC,	Palo	Alto,	CA.	Version	1.01391280371759.

For	more	information,	contact	support@careercup.com.

978-0984782819	(ISBN	13)

		
	

To	my	little	buddy,	Davis.
~	Gayle

To	Tim,	who	supports	me	in	all	my	adventures.
~	Jackie

Table	of	Contents
1.	Introduction

Why	does	this	matter?
Who	are	we?
What	now?

2.	The	Product	Manager	Role
What	is	a	PM?
Functions	of	a	PM
Top	Myths	about	Product	Management
Project	Managers	and	Program	Managers

3.	Companies
How	the	PM	Role	Varies
Google
Microsoft
Apple
Facebook
Amazon
Yahoo
Twitter
Startups

4.	Getting	the	Right	Experience
New	Grads
Making	the	Most	of	Career	Fairs
Do	you	need	an	MBA?
Why	Technical	Experience	Matters
Transitioning	from	Engineer	to	Product	Manager
Transitioning	from	Designer	to	Product	Manager
Transitioning	from	Other	Roles
What	Makes	a	Good	Side	Project?

5.	Career	Advancement
Tips	and	Tricks	for	Career	Advancement
Q	&	A:	Fernando	Delgado,	Sr.	Director,	Product	Management	at	Yahoo
Q	&	A:	Ashley	Carroll,	Senior	Director	of	Product	Management,	DocuSign
Q	&	A:	Brandon	Bray,	Principal	Group	Program	Manager,	Microsoft
Q	&	A:	Thomas	Arend,	International	Product	Lead,	Airbnb
Q	&	A:	Johanna	Wright,	VP	at	Google
Q	&	A:	Lisa	Kostova	Ogata,	VP	of	Product	at	Bright.com

6.	Behind	the	Interview	Scenes
Google
Microsoft
Facebook
Apple
Amazon
Yahoo
Twitter
Dropbox

7.	Resumes
The	15	Second	Rule
The	Rules

Attributes	of	a	Good	PM	Resume
What	to	Include

8.	Real	Resumes:	Before	&	After
Richard	Wang	(Anonymized)
Paul	Unterberg
Amit	Agarwal	(Anonymized)
Adam	Kazwell

9.	Cover	Letters
Elements	of	a	Good	PM	Cover	Letter
The	Cover	Letter	Template
A	Great	Cover	Letter

10.	Company	Research
The	Product
The	Strategy
The	Culture
The	Role
The	Questions

11.	Define	Yourself
“Tell	Me	About	Yourself”	(The	Pitch)
“Why	do	you	want	to	work	here?”
“Why	should	we	hire	you?”
“Why	are	you	leaving	your	current	job?”
“What	do	you	like	to	do	in	your	spare	time?”
“Where	do	you	see	yourself	in	five	years?”
“What	are	your	strengths	and	weaknesses?”
Sample	Strengths
Sample	Weaknesses

12.	Behavioral	Questions
Why	These	Questions	Are	Asked
Preparation
Follow-Up	Questions
Types	of	Behavioral	Questions

13.	Estimation	Questions
Approach
Numbers	Cheat	Sheet
Tips	and	Tricks
Example	Interview
Sample	Questions

14.	Product	Questions
About	the	Product	Question
Type	1:	Designing	a	Product
Type	2:	Improving	a	Product
Type	3:	Favorite	Product
Preparation
Tips	and	Tricks
Sample	Questions

15.	Case	Questions
The	Case	Question:	Consultants	vs.	PMs
What	Interviewers	Look	For
Useful	Frameworks

Product	Metrics
Interview	Questions

16.	Coding	Questions
Who	Needs	To	Code
What	You	Need	To	Know
How	You	Are	Evaluated
How	To	Approach
Developing	an	Algorithm
Additional	Questions
Solutions

17.	Appendix
Ian	McAllister:	Top	1%	PMs	vs.	Top	10%	PMs
Adam	Nash:	Be	a	Great	Product	Leader
Sachin	Rekhi:	The	Inputs	to	a	Great	Product	Roadmap
Ken	Norton:	How	to	Hire	a	Product	Manager
Amazon	Leadership	Principles

18.	Acknowledgements
Gayle	Laakmann	McDowell
Jackie	Bavaro

Please	join	us	at	CrackingThePMInterview.com	for	additional	resources	and
information,	or	to	discuss	questions	with	fellow	PMs.

http://CrackingThePMInterview.com

Introduction
Chapter	1

Product	management	is	a	strange	role.

For	many	roles,	getting	from	point	A	to	point	B	is	pretty	obvious.	If	you	want	to
get	 a	 programming	 job,	 you	 learn	 how	 to	 program.	 So	 you	 go	 to	 college	 for
computer	 science	 or	 you	 learn	 to	write	 code	 on	 your	 own.	Ditto	 for	 being	 an
accountant,	lawyer,	doctor,	etc.

If	you	want	to	be	a	product	manager,	what	do	you	do?	There	are	no	schools	for
product	 management.	 There’s	 no	 formal	 training.	 It’s	 also	 not	 a	 role	 you
typically	get	promoted	into,	exactly.

How,	then,	does	one	land	a	product	manager	job?	That’s	what	this	book	is	here
to	teach	you.

Jackie	and	I	have	worked	with	countless	current	and	aspiring	product	managers
to	help	them	learn	how	to	get	 the	right	experience,	how	to	position	themselves
appropriately,	how	to	prepare	for	interviews,	and	how	to	ace	them.

This	 book	 translates	 these	many	hours	 of	 coaching	 sessions	 and	 conversations
into	written	form.

Why	does	this	matter?
Product	management	shouldn’t	be	this	elusive	role,	accessible	only	to	those	who
are	 lucky	 (and	 connected)	 enough	 to	have	 someone	 explain	what	PMing	 is	 all
about.	Greater	accessibility	is	a	good	thing	for	candidates	and	employers	alike.

You,	the	candidate,	are	better	able	to	position	yourself	for	a	job	when	you	know
what	 to	 expect.	 It’s	 not	 about	 faking	 anything;	 you	 can	 actually	 acquire	 the
experience	you	need	once	you	know	you	need	it.

When	 it	 comes	 time	 for	 interviews,	 you’ll	 able	 to	 prepare	 for	 their	 questions
more	 effectively.	You	will	 learn	 how	 to	 describe	 your	 unique	 experiences	 and
most	 important	 accomplishments.	 You’ll	 learn	 how	 to	 tackle	 problem-solving
questions.	You’ll	understand	what	it	means	to	think	about	the	user.	And,	finally,
you’ll	solidify	your	technical	skills.

Employers,	 in	 turn,	 get	 more	 qualified	 candidates.	 More	 relaxed	 and	 better
prepared	candidates	perform	in	a	way	that	is	more	consistent	with	their	skillset.
They	 know	 which	 accomplishments	 are	 most	 interesting	 and	 relevant	 to
employers,	 and	 they	 can	drive	 the	 conversation	 toward	 those	 things.	They	 can
demonstrate	 their	 problem-solving	 skills	 when	 they	 know	 that’s	 what	 the
question	is	about.	They	can	learn	the	bits	of	knowledge	that	they	need	in	order	to
tackle	specific	questions.	This	sort	of	preparation	portrays	a	candidate’s	skillset
closer	to	how	it	would	be	on	the	job.

Taking	 the	 guesswork	 and	 randomness	 out	 of	 interviews	 is	 a	 good	 thing	 for
everyone.

Who	are	we?
If	 you	 flip	 to	 the	 back	 of	 the	 book,	 you	 can	 read	 our	 credentials:	 Google.
Microsoft.	 Apple.	 Startups.	 Hiring	 committee.	 Oodles	 of	 interviews	 and
coaching	sessions.

Yadda,	yadda,	yadda.

That’s	all	very	well	and	good,	but	that	won’t	tell	you	who	we	really	are	and	how
we	got	here,	writing	a	book	on	landing	a	product	management	job.

I	(Gayle)	come	from	a	deep	engineering	background,	but	I’ve	also	spent	a	lot	of
time	 working	 with	 candidates:	 interviewing	 them	 for	 dev	 and	 PM	 roles,
conducting	mock	interviews,	coaching	them	on	how	to	strengthen	their	answers,
teaching	 them	concepts	 that	 they	don’t	 understand,	 and	discovering	what	 their
goals	and	passions	are.

I	 learned	 two	 things	 through	 this.	 First,	 I	 learned	 how	 much	 even	 good
candidates	 could	 improve	 their	 interview	 performance,	 with	 a	 bit	 of	 help.
Second,	 I	 learned	 how	 little	 information	 there	 was	 about	 getting	 a	 product
management	 role.	 Lots	 of	 people	 talked	 about	 how	 to	 be	 a	 good	 product
manager,	but	few	people	talked	about	how	to	actually	break	into	that	field.

Except,	of	course,	for	my	amazing	coauthor,	Jackie.

I	 stumbled	 across	 Jackie’s	 blog	 on	Quora,	 the	 question	 and	 answer	 site.	After
following	her	for	a	bit,	I	was	struck	by	a	few	things.	First,	she	had	worked	for
several	 of	 the	 top	 companies,	 so	 she	 was	 good	 enough	 to	 navigate	 these
interviews	 herself.	 Second,	 her	 advice	 was	 to-the-point,	 actionable,	 and	 good.
Third,	she	cared.	She	cared	enough	to	write	a	blog	to	help	people	enter	the	PM
profession.

Making	the	product	management	field	more	accessible	is	 important	to	both	me
and	Jackie.	We	believe	that	everyone	benefits	from	this,	and	that	is	why	we’ve
written	this	book.

What	now?
This	book	will	 not	help	you	“fake”	your	way	 into	a	PM	 job.	 It	will,	 however,
give	you	a	plan	of	attack,	from	the	beginning	to	the	end	of	the	process.

We	 will	 show	 you	 what	 a	 product	 manager	 is	 and	 how	 the	 role	 varies	 from
company	 to	 company.	 We	 will	 also	 describe	 how	 different	 companies	 think
about	their	hiring	process.

We	will	 talk	 to	product	managers	 from	a	variety	of	backgrounds	 to	understand
how	they	broke	into	this	field	and	to	get	their	perspective	on	what	makes	a	good
product	manager.

We	will	 talk	 about	 the	 different	 backgrounds	 PMs	 tend	 to	 have	 and	 how	 you
might	make	the	transition	given	your	background	and	interests.

We	will	show	you	how	to	write	a	great	resume	and	cover	letter.	Some	of	this	will
be	advice	that	applies	outside	of	product	management,	but	much	of	it	is	advice
specific	to	product	managers.

We	will	advise	you	on	how	to	get	ready	for	an	interview:	what	sort	of	research
you	need	to	do	prior	to	an	interview	and	how	to	prepare	for	questions.	We	will
tackle	 each	 of	 the	 major	 interview	 question	 types—including	 behavioral
questions,	 estimation	 questions,	 product	 questions,	 case	 questions,	 and	 coding
questions—and	explain	to	you	what	an	interviewer	is	 looking	for	and	how	you
master	those	questions.

We	will	help	you	put	your	best	foot	forward	so	you	can	get	in	the	door.

As	you	read	these	pages,	reflect	on	how	you	can	draw	out	 the	strong	points	of
your	 experience	 in	 an	 interview	 and	 how	 you	 can	 deliver	 more	 powerful
responses.

We	 are	 here	 to	 help.	 Please	 join	 us	 online	 at	 crackingthepminterview.com	 for
additional	resources	and	tips.

And	 finally,	 just	as	 software	 is	never	“done,”	we	hope	 this	book	will	never	be
either.	 If	 you	 have	 suggestions,	 feedback,	 questions	 or	 just	 want	 to	 say	 “hi,”
don’t	hesitate	to	drop	us	a	note:	gayleandjackie@careercup.com

Thank	you,	and	good	luck!

Gayle	L.	McDowell
facebook.com/gayle
twitter.com/gayle
technologywoman.com
quora.com/Gayle-Laakmann-McDowell

Jackie	Bavaro
facebook.com/jackie.bavaro
twitter.com/jackiebo
pmblog.quora.com
quora.com/Jackie-Bavaro
	
	
	
	
	
	
	

The	Product	Manager	Role
Chapter	2

What	is	a	PM?
A	PM	is	responsible	for	making	sure	that	a	team	ships	a	great	product.

Some	people	will	say	 that	 the	product	manager	 (sometimes	called	 the	program
manager	or	project	manager)	is	like	a	mini-CEO	of	their	product.	That’s	accurate
in	some	ways,	since	a	PM	takes	holistic	responsibility	for	the	product,	from	the
little	details	to	the	big	picture.	The	PM	needs	to	set	vision	and	strategy.	The	PM
defines	success	and	makes	decisions.

But	 in	one	of	 the	most	 important	ways,	 the	description	of	product	manager	 as
CEO	 misses	 the	 boat:	 product	 managers	 don’t	 have	 direct	 authority	 over	 the
people	on	their	team.

As	a	PM,	you’ll	need	 to	 learn	 to	 lead	your	 team	without	authority,	 influencing
them	with	 your	 vision	 and	 research.	 Product	managers	 are	 highly	 respected	 at
most	 companies,	 but	 not	 more	 so	 than	 engineers.	 If	 you	 show	 up	 and	 start
bossing	people	around,	you’ll	probably	find	it	hard	to	get	things	done.	After	all,
engineers	 are	 the	 ones	 actually	 building	 the	 product.	 You	 need	 them	 on	 your
side.

One	reason	product	management	is	such	an	appealing	career	is	you	get	to	sit	at
the	intersection	of	technology,	business,	and	design.	You	get	to	wear	many	hats
and	learn	multiple	points	of	view.

As	a	product	manager,	you’ll	be	the	advocate	for	the	customer.	You’ll	learn	their
needs	 and	 translate	 those	 needs	 into	 product	 goals	 and	 features.	 Then	 you’ll
make	sure	those	features	are	built	in	a	cohesive,	well-designed	way	that	actually
solves	the	customer’s	needs.	You’ll	focus	on	everything	from	the	big	picture	to
the	small	details.	One	day	you	might	brainstorm	 the	 three-year	vision	 for	your
team,	while	the	next	day	you	work	through	the	details	of	the	buttons	in	a	dialog.

Product	management	is	a	highly	collaborative	role.	The	product	manager	usually
serves	 as	 the	 main	 liaison	 between	 the	 engineerings	 and	 other	 roles	 such	 as
design,	 quality	 assurance,	 user	 research,	 data	 analysts,	 marketing,	 sales,
customer	 support,	 business	 development,	 legal,	 content	 writers,	 other
engineering	 teams,	 and	 the	 executive	 team.	 It’s	 usually	 the	 job	 of	 the	 product
manager	to	identify	times	when	one	of	those	teams	should	be	brought	in,	and	to
fill	in	for	them	if	they	don’t	exist.

Functions	of	a	PM
The	day-to-day	work	of	a	product	manager	varies	over	the	course	of	the	product
life	cycle.	At	the	beginning,	you’ll	be	figuring	out	what	to	build;	in	the	middle
you’ll	help	the	team	make	progress;	at	the	end	you’ll	be	preparing	for	the	launch.

While	the	product	life	cycle	varies	by	company	(and	sometimes	even	by	team),	it
usually	follows	a	general	pattern	of	Research	&	Plan,	Design,	Implement	&	Test,
and	Release.	Of	course,	these	frequently	overlap	and	feed	back	into	each	other.

Some	companies	or	teams	split	the	product	manager	role	across	two	people:	the
more	business-focused	person	and	the	more	engineering-focused	person.	When
companies	make	this	split,	they	call	the	engineering-focused	person	the	technical
program	 manager	 or	 technical	 product	 manager	 (TPM),	 and	 they	 call	 the
business-focused	person	the	product	manager	(PM).

When	a	team	has	a	TPM	and	a	PM,	the	product	manager	focuses	on	Research	&
Planning	and	Release,	while	 the	technical	product	manager	 is	more	focused	on
Design	and	Implement	&	Test.	For	example,	the	product	manager	will	research
the	market	 and	 define	 the	 requirements.	 The	 TPM	will	 work	 with	 the	 PM	 to
translate	 those	 requirements	 into	 the	 specific	 feature	 work	 required,	 and	 then
facilitate	the	engineering	team	as	they	build	it.

Research	&	Planning
All	products	and	features	start	with	research	and	planning.	This	is	the	time	when
the	PM	 is	 starting	 to	 think	about	what	 to	build	next.	The	next	 idea	may	come
from	 a	 customer	 request,	 competitive	 analysis,	 new	 technology,	 user	 research,
the	sales	or	marketing	teams,	brainstorming,	or	the	big	vision	for	the	product.

Depending	on	the	scope	of	 the	role,	a	big	part	of	 the	product	manager’s	 job	in
this	 phase	 is	 creating	 or	 proposing	 a	 roadmap.	 This	 means	 figuring	 out	 a
cohesive	 long-term	plan	 for	 the	 team.	The	PM	 talks	 to	 all	 possible	 sources	 to
create	 a	 large	 list	 of	 potential	 features	 or	 development	 work.	 Then,	 based	 on
factors	like	customer	needs,	the	competitive	landscape,	business	needs,	and	the

team’s	expertise,	he	prioritizes	the	features	and	scenarios.

Once	the	PM	has	a	proposed	roadmap,	he	needs	to	bring	other	people	on	board.
Some	 companies,	 such	 as	 Microsoft,	 Apple,	 and	 Amazon,	 have	 a	 top-down
approval	process,	where	executives	and	directors	get	involved	very	early.	Other
companies,	such	as	Google,	Facebook,	and	many	startups,	have	a	more	bottom-
up	approach,	where	the	PM	focuses	on	winning	over	the	engineers.

Once	 he’s	 chosen	 a	 feature	 set,	 the	 product	 manager	 becomes	 the	 expert	 on
them.	He’ll	think	deeply	about	the	problems	he’s	trying	to	solve	and	the	goals	of
the	 features.	 In	 the	 coming	 phases,	 everyone	 on	 the	 team	will	 have	 questions,
including	“why	are	we	working	on	this?”,	and	the	PM	will	need	to	have	answers.

This	 is	also	 the	 time	when	the	PM	starts	defining	success.	He’ll	envision	what
the	world	looks	like	if	the	team	is	successful.	Many	companies	use	the	model	of
Objectives	and	Key	Results	(OKRs)	to	communicate	the	most	important	goals	of
the	 team.	 In	 this	 model,	 the	 PM	 works	 with	 the	 team	 to	 come	 up	 with
measurable	results	that	it	can	commit	to.

Design
Once	the	PM	has	formed	agreement	on	what	the	team	is	going	to	build,	it’s	time
to	design	the	product	and	features.

Product	 design	 does	 not	 just	 mean	 user	 interface	 (UI)	 design	 or	 drawing	 out
what	 the	 product	 will	 look	 like.	 Product	 design	 is	 defining	 the	 features	 and
functionality	of	the	product.	The	PM’s	role	in	product	design	varies	substantially
between	companies	and	teams.

On	 some	 teams,	 especially	 shipped	 software	 (as	 opposed	 to	 online	 software)
teams	 at	 Microsoft,	 the	 PM	 will	 write	 out	 a	 detailed	 functional	 specification
(spec)	that	includes	things	like:
	

Goals

Use	Cases

Requirements

Wireframes

Bullet	points	describing	every	possible	state	of	the	feature

Internationalization

Security

The	 spec	will	 then	 spend	weeks	being	 inspected,	 reviewed,	 and	 iterated	on	by
developers,	testers,	and	other	PMs.	On	these	teams,	the	PM	is	expected	to	make
every	user-facing	decision.

Other	teams	have	much	looser	specs	and	a	more	rapid	design	process.	The	PM
might	sit	down	with	an	interaction	designer,	chat	about	the	goals,	brainstorm	on
a	whiteboard,	and	 then	 iterate	by	giving	 feedback	on	 the	designer’s	mock-ups.
When	the	mocks	are	ready,	the	PM	might	send	them	to	the	engineers	with	just	a
few	 sentences	 in	 an	 email.	On	 these	 teams,	 the	 engineers	will	 generally	make
easy	product	decisions	as	 they	come	up	and	call	 the	PM	over	 to	ask	about	 the
more	difficult	ones.

And	 for	 some	 teams,	 especially	 at	 Apple,	 the	 design	 is	 done	 mostly	 by	 a
dedicated	design	team	with	minimal	input	from	the	PM.	On	those	teams,	the	PM
might	focus	more	on	project	management	and	fighting	fires	as	they	come	up.

Since	 the	 product	 manager’s	 role	 in	 product	 design	 can	 vary	 so	 much	 across
teams,	it’s	a	great	thing	to	ask	about	during	your	interview.	Ask	about	who	you’ll
be	working	with	on	your	core	and	extended	 team.	Find	out	how	much	of	your
time	 will	 be	 spent	 writing	 specs	 and	 how	 much	 you’ll	 be	 working	 with
designers.	Learn	where	the	balance	is	between	PMs,	designers,	and	engineers	in
making	product	decisions.

Implement	&	Test
A	PM’s	work	isn’t	done	once	engineers	start	coding.	During	the	implementation
stage,	 the	product	manager	keeps	 track	of	how	 the	project	 is	going	and	makes
adjustments.

During	implementation,	one	of	the	most	important	parts	of	the	job	is	helping	the
engineers	work	efficiently.	The	product	manager	will	check	in	regularly	with	his
team	and	learn	how	things	are	going.

Often	an	engineer	will	be	blocked	because	she’s	waiting	for	work	from	another

team.	In	this	case,	the	PM	will	need	to	find	other	tasks	for	the	engineer	and,	in
the	meantime,	work	with	the	other	team	to	get	the	work	finished	more	promptly.

Sometimes,	 implementation	 of	 a	 feature	 will	 turn	 out	 to	 be	 harder	 than
anticipated,	and	the	PM	will	look	for	ways	to	change	the	feature	to	make	it	easier
to	 implement.	 If	 an	 engineer	 is	 running	behind	 schedule,	 the	 product	manager
can	review	the	scheduled	work	carefully	and	cut	lower	priority	work.

During	 implementation,	 the	product	manager	will	also	start	gathering	feedback
and	 reporting	 bugs	 on	 the	 early	 versions	 of	 the	 product.	 Sometimes,	 a	 feature
that	looked	good	during	the	design	phase	will	not	work	as	well	as	expected	once
it’s	 used	 in	 the	 real	world.	 To	 find	 problems	 like	 this,	 teams	will	 do	 usability
studies,	run	experiments,	and	do	internal	“dogfooding.”

Dogfooding	comes	 from	 the	 term	“Eat	your	own	dogfood,”	and	 simply	means
using	 your	 own	 product	 yourself.	 For	 example,	 people	 at	Microsoft	 run	 early
versions	of	 the	next	Windows	 release	on	 their	 computers	 every	day.	Facebook
employees	use	Facebook	Groups	to	communicate.

Sometimes	 teams	 need	 to	 be	 more	 creative	 to	 find	 ways	 to	 use	 their	 own
products.	 For	 example,	 Google	 gives	 employees	 an	 AdWords	 budget	 and
encourages	people	to	create	advertising	campaigns	to	make	sure	they	get	enough
dogfooding.

Another	way	 to	 find	out	 if	a	product	will	work	before	 it’s	 launched	 is	 through
usability	 studies.	 In	 a	usability	 study,	participants	 try	out	 early	prototypes	of	 a
new	product	or	feature.	Usually	the	participants	are	given	a	scenario	or	goal,	and
then	they’ll	try	to	use	the	prototype	to	accomplish	the	goal.

Larger	 companies	 usually	 have	 a	 user	 researcher,	 who	 develops	 and	 runs	 the
study	with	some	input	from	the	product	manager.	At	smaller	companies,	the	PM
might	run	the	studies.	In	both	cases,	by	watching	a	handful	of	studies,	PMs	can
see	where	people	struggle	and	identify	key	usability	issues.

While	dogfooding	and	usability	studies	are	great	for	getting	qualitative	feedback,
running	experiments	is	a	way	to	get	quantitative	feedback	when	you	have	online
software.	In	an	experiment,	the	new	feature	is	turned	on	for	a	percentage	of	users
(the	experiment	group),	while	the	rest	of	users	(the	control	group)	keep	using	the
product	without	 the	new	 feature.	For	online	 software,	 it’s	 common	 for	all	new
features	to	be	launched	gradually	as	an	experiment.

In	an	experiment,	you	can	measure	specific	metrics	for	the	new	feature,	such	as
how	 many	 people	 click	 a	 new	 button	 you	 added,	 as	 well	 as	 overall	 success
metrics	like	user	engagement,	retention,	and	revenue.	By	comparing	the	success
metrics	between	the	experiment	and	control	groups,	you	can	tell	how	successful
the	new	feature	is.

As	 feedback	 comes	 in	 through	dogfooding,	 usability	 studies,	 and	 experiments,
the	PM	identifies	the	most	important	issues	and	iterates	on	the	feature	design	to
find	 better	 solutions.	 Prioritization	 is	 one	 of	 the	 product	 manager’s	 most
important	 functions	 at	 this	 point;	 if	 the	 team	were	 to	 fix	 every	 bug	 and	 build
every	 new	 feature	 idea,	 the	 product	 would	 never	 launch.	 The	 PM	 needs	 to
consider	all	of	the	new	requests	and	decide	if	they	should	be	prioritized	for	the
current	release	or	punted	to	a	later	time.

Release
When	the	development	process	is	finished,	the	product	manager	needs	to	make
sure	the	launch	goes	smoothly.	The	launch	process	varies	from	team	to	team	but
usually	involves	things	like:
	

Running	 through	a	 launch	checklist.	There	might	 be	 final	 approvals	 from	key	 stakeholders	 like
Legal	or	coordination	steps	with	teams	like	Marketing	and	Operations.

Making	sure	that	 the	 teams	who	will	 support	 the	product	going	forward	are	prepared.	 For	 a
web	 product	 this	might	 be	 the	 customer	 service	 team;	 for	 a	 hardware	 product	 it	 could	 be	 the
manufacturing	team;	for	a	service-based	product	it	could	be	the	operations	team.

Preparing	for	all	the	things	that	could	go	wrong.	As	the	release	nears,	urgent	issues	inevitably	pop
up,	and	the	PM	thinks	on	her	feet	to	fight	the	fires.

After	a	successful	launch,	the	PM	usually	announces	the	launch	to	the	rest	of	the
company,	 celebrates	 with	 the	 team,	 and	 then	 prepares	 to	 do	 it	 all	 over	 again.
Depending	on	the	team,	the	PM	might	continue	to	support	the	product	after	the
launch,	gathering	metrics	and	iterating	on	user	feedback,	or	the	product	might	be
handed	over	to	another	team	for	operations	and	maintenance.

How	the	type	of	product	affects	the	PM	job
The	actual	work	a	product	manager	does	can	depend	a	lot	on	what	the	product	is.
Software	 that	 ships	on	a	DVD	or	 in	an	app	 store	 is	very	different	 from	online

software	that	can	be	updated	at	any	time.	Additionally,	being	a	PM	on	a	mature
product	might	be	very	different	from	being	a	PM	on	a	new	product.

Shipped	Software
Shipped	software	refers	to	products	like	mobile	apps	that	ship	in	the	Apple	App
Store	or	software	 that	 ships	on	DVDs.	Shipped	software	 is	unique	because	 it’s
hard	 to	update	after	 launching.	With	a	web	app,	you	can	always	 release	a	new
feature	 and	 quickly	 roll	 it	 back	 if	 there	 are	 issues.	With	 shipped	 software,	 it’s
important	to	get	it	right	the	first	time.

As	 a	 result,	 shipped-software	 teams	 tend	 to	 have	 longer	 timelines,	 and	 the
products	 require	 more	 project	 management	 and	 coordination	 between	 teams.
Specs	 are	more	 important	 because	 features	 are	more	 formal	 and	need	 to	 serve
more	audiences.	User	research	and	internal	dogfooding	(using	early	builds	of	the
software)	are	also	very	important	since	you	need	to	know	if	the	product	is	good
before	it’s	released.

PMs	who	are	good	at	project	management	and	have	good	communication	skills
do	well	working	 on	 shipped	 software.	 Shipped	 software	 can	 also	 be	 great	 for
people	 who	 want	 a	 good	 work/life	 balance,	 since	 there	 aren’t	 usually	 urgent
issues	that	need	to	be	fixed	within	hours.

Online	Software
In	 online	 software,	 being	 scrappy	 is	 very	 important.	 Product	 updates	 are
relatively	easy,	so	things	tend	to	move	quickly.	Instead	of	waiting	for	the	product
to	 be	 perfect,	 teams	will	 often	 launch	 something,	 see	 how	 it	 does,	 and	 launch
again.

Most	 online-software	 teams	 run	 A/B	 tests	 (also	 called	 multivariate	 testing	 or
online	experiments).	In	an	A/B	test,	a	new	feature	is	released	to	a	percentage	of
users.	The	behaviors	of	the	experiment	and	control	group	are	later	compared	to
see	if	the	new	feature	improves	the	experience.

Because	companies	in	online	software	collect	more	data,	it’s	important	that	these
PMs	are	skilled	with	data	analysis	and	designing	experiments.	It’s	also	important
to	work	well	under	pressure,	as	servers	can	fail	at	any	time	and	PMs	often	have
to	make	quick	decisions.

Consumer	Products
In	consumer	products	like	social	networks,	photo	sharing	apps,	and	web	search,
the	customers	are	regular	everyday	people,	just	like	you,	your	grandmother,	and
the	 engineers.	 The	 good	 thing	 about	 working	 on	 consumer	 products	 is	 that
everyone	 understands	 the	 target	 customer	 and	 use	 cases.	 Unfortunately,	 that’s
also	the	bad	thing.

On	 a	 consumer	 facing	 product,	 the	 engineers	 will	 often	 have	 lots	 of	 product
ideas	and	won’t	rely	as	much	on	the	product	manager	to	come	up	with	features
and	design.	PMs	can	often	act	like	shepherds	and	editors,	guiding	the	product	to
a	good	endpoint,	rather	than	being	the	person	who	makes	all	the	decisions.

Data-driven	 PMs	 can	 do	 very	 well	 working	 on	 consumer	 products	 because
they’re	able	to	make	a	strong	case	for	their	proposals,	and	they	often	can	come
up	with	 features	 that	 will	make	 a	 difference	 to	 the	 core	metrics	 the	 company
cares	about.	Consumer	products	are	also	great	for	people	who	want	to	be	able	to
explain	what	they	do	to	their	parents!

B2B	Products
In	business-to-business	(B2B)	products	like	online	ads	or	productivity	software,
the	 customer	works	 at	 another	 company.	 For	 these	 products,	 engineers	 realize
that	they’re	not	the	target	audience	and	tend	to	rely	more	on	the	product	manager
to	understand	the	customer.

Depending	 on	 the	 team,	 sometimes	 PMs	 on	B2B	 products	 are	 responsible	 for
thinking	 about	 how	 product	 decisions	 will	 affect	 revenue.	 They’ll	 need	 to
balance	features	that	match	their	long-term	strategy	against	features	that	current
big	customers	are	clamoring	for.

PMs	who	like	doing	customer	research	and	market	analysis	could	enjoy	working
on	B2B	products.	These	are	also	the	products	where	PMs	tend	to	exert	the	most
influence,	so	they	can	be	a	very	satisfying	place	to	work.

Early	Stage	Products
With	 newer	 products,	 such	 as	 those	 about	 to	 launch	 or	 recently	 launched,	 the
team	is	often	focused	on	shipping	a	minimum	viable	product	(MVP).	This	is	not
the	time	to	tackle	all	challenges,	since	you	don’t	even	know	if	 the	product	 is	a
good	fit	in	the	market	and	for	customers.	Instead,	you	want	to	answer	questions

and	prove	your	core	value	as	quickly	as	possible.

PMs	focus	on	cutting	non-essential	features	to	strip	the	product	down	to	just	the
essentials.	This	allows	them	to	launch	faster	and	to	begin	the	process	of	learning
what	customers	really	want	(or	if	they	want	the	product	at	all).	Sometimes,	this
means	launching	products	that	aren’t	as	polished	as	you	would	like.

PMs	who	like	excitement	and	are	comfortable	with	doing	things	 the	quick	and
dirty	way	do	well	on	early	stage	products.	For	PMs	on	early	stage	startups,	the
most	 exciting	 thing	 can	 be	 taking	 a	 product	 from	 a	 tiny	 user	 base	 to	 a	much
larger	one.

Mature	Products
For	mature	products,	such	as	market	leaders,	most	of	the	work	will	be	iterating
on	the	product	and	trying	to	improve	it.	PMs	often	have	feedback	from	previous
versions	as	to	which	areas	need	the	most	improvement	and	can	focus	on	them.

As	a	PM	on	a	mature	product,	it	can	be	very	important	to	make	sure	you	don’t
get	 stuck	 making	 small	 incremental	 improvements.	 Often,	 a	 mature	 product’s
biggest	 competitor	 is	 the	 last	 version	 of	 that	 same	 product.	At	 the	 same	 time,
mature	products	often	have	the	luxury	of	time	to	make	big	bets	on	new	ideas.

One	 of	 the	 biggest	 advantages	 of	 working	 on	 a	 mature	 product	 is	 that	 you
already	have	a	huge	user	base.	Every	improvement	you	make	will	be	multiplied
to	make	 a	 very	 big	 impact.	 On	 the	 other	 hand,	many	 companies	 with	mature
products	become	risk	averse	and	won’t	make	daring	changes.

PMs	who	 want	 to	 work	 on	 products	 used	 by	millions	 of	 people	 would	 enjoy
working	on	mature	products.	Mature	products	are	also	a	great	place	to	learn	from
the	people	who	were	able	to	make	the	product	succeed.

Top	Myths	about	Product	Management
Since	 product	 management	 isn’t	 a	 very	 well-known	 role,	 there	 are	 a	 lot	 of
misconceptions	about	who	product	managers	are	and	what	what	 they	do.	Here
are	the	top	ten	myths	about	product	management.

1.	Product	Managers	are	Project	Managers.

While	some	product	managers	have	project	management	as	a	large	part	of	their
job,	 most	 do	 not.	 Project	 managers	 are	 mostly	 concerned	 with	 timelines	 and
coordination.	 While	 they	 might	 be	 responsible	 for	 gathering	 the	 project
requirements,	 they	 don’t	 have	 much	 say	 in	 identifying	 and	 choosing	 the
requirements.

Product	 managers	 are	 responsible	 for	 identifying	 problems	 and	 opportunities,
picking	which	ones	 to	go	after,	 and	 then	making	sure	 the	 team	comes	up	with
great	solutions,	either	by	thinking	of	the	solution	themselves	or	by	working	with
the	designers	and	engineers.	This	is	why	product	sense—having	the	intuition	to
recognize	 the	 difference	 between	 a	 good	 product	 and	 a	 bad	 product—is	 so
important	for	product	managers.

2.	Product	Managers	are	in	Marketing.

This	 myth	 is	 tricky,	 because	 with	 title	 inconsistencies,	 sometimes	 there	 are
marketing	 roles	 called	 “Product	 Manager.”	 But	 at	 companies	 like	 Google,
Amazon,	 Twitter,	 and	 Facebook,	 product	 managers	 are	 not	 in	 the	 marketing
department.	Instead,	they’re	usually	in	the	engineering	organization.

Marketing	folks	focus	on	getting	users	into	the	product,	while	product	managers
define	what	happens	once	the	user	is	in	the	product.

For	 example,	 a	marketing	manager	might	 come	up	with	messaging	and	 start	 a
social	media	 campaign,	while	 a	 product	manager	 comes	 up	with	 new	 features
and	works	with	the	engineers	to	launch	them.	While	marketing	people	will	talk
to	product	managers	about	features	that	would	help	the	messaging	or	branding,
they	don’t	define	the	details	of	those	features	or	work	with	the	engineers	to	build
them.

3.	You	can’t	become	a	product	manager	right	out	of	college.

The	word	“manager”	in	the	title	makes	many	people	think	that	you	need	a	lot	of
experience	to	become	a	product	manager.	Also,	because	product	managers	make
so	many	decisions	that	affect	the	direction	of	important	products,	it	seems	like	a
senior	role.

In	 fact,	 many	 tech	 companies	 like	 Google,	 Microsoft,	 Facebook,	 and	 Yahoo
recruit	 product	 managers	 directly	 out	 of	 college.	 They’ve	 found	 that	 passion,
intellect,	 a	 strong	 customer	 focus,	 and	 lots	 of	 energy	 can	 be	 a	 winning
combination	 for	great	PMs.	 If	you	want	 to	become	a	PM,	don’t	 think	 that	you
have	to	take	a	different	job	first.

4.	Product	Managers	just	write	specs.

The	 job	 of	 a	 PM	 is	 very	 different	 than	 that	 of	 an	 engineer	 or	 a	 designer.
Engineers	 are	 expected	 to	 deliver	working	 code	 and	designers	 are	 expected	 to
deliver	wireframes	and	mocks.	For	PMs,	just	delivering	a	spec	isn’t	enough.

PMs	 are	 responsible	 for	 seeing	 the	 entire	 project	 through	 to	 a	 successful
completion.	Writing	 a	 spec	 is	 a	 technique	 for	 communicating	 and	moving	 the
project	along,	but	the	spec	doesn’t	have	intrinsic	value.	Many	PMs	communicate
ideas	without	 specs,	 through	 conversations	 and	 drawing	 ideas	 on	whiteboards.
And	some	PMs	fail	because	they	write	a	spec	but	don’t	follow	through	to	make
sure	the	team	understood	and	implemented	the	ideas.

5.	Product	managers	just	set	up	meetings.

Some	people	think	that	a	PM’s	job	is	just	to	get	the	key	stakeholders	in	a	room
together	 to	make	decisions.	Good	product	managers	don’t	 just	serve	as	passive
conduits	of	other	people’s	opinions.	Instead,	PMs	research	the	area	and	come	up
with	their	own	point	of	view	and	frameworks	for	making	decisions.

PMs	do	need	 to	meet	with	 the	key	 stakeholders	 and	understand	 their	 opinions
and	priorities,	but	then	they	synthesize	those	perspectives,	lay	out	the	tradeoffs,
and	come	up	with	a	recommendation	that	will	satisfy	all	of	the	stakeholders.	In
any	meeting	or	conversation,	 the	PM	needs	 to	 represent	 the	 interests	of	all	 the
people	who	are	not	in	the	room.

Product	managers	 are	 able	 to	 reduce	 the	 number	 of	meetings	 their	 teammates
need	to	attend	because	they’re	able	to	represent	the	team	to	other	groups	and	find
productive	ways	of	communicating	that	don’t	require	meetings.

6.	PMs	should	build	exactly	what	the	customers	ask	for.

It’s	great	 to	do	customer	research	and	 listen	 to	what	customers	ask	for,	but	 it’s
not	enough.	Product	managers	look	beyond	what	customers	say	to	see	the	hidden
needs	and	deeper	goals.

When	Oxo,	 a	kitchen	utensil	 company,	 asked	customers	what	was	wrong	with
their	measuring	cup,	they	talked	about	the	cup	breaking	when	they	dropped	it	or
its	having	a	slippery	handle.	But	when	 they	watched	people	use	 the	measuring
cup,	they	saw	people	pour,	then	bend	down	to	read	the	measurements,	then	pour,
then	bend,	then	pour,	then	bend.

Nobody	asked	to	be	able	to	read	the	measurements	while	pouring,	but	Oxo	was
able	to	see	the	need.	They	now	sell	a	measuring	cup	with	the	measurements	at	an
angle	so	you	can	see	the	lines	while	pouring.
7.	PMs	set	the	dates.

As	Nundu,	a	PM	at	Google,	says,	“PMs	don’t	set	dates.	Engineers	set	dates.”	As
a	PM,	you	can	tell	your	team	what	you	want	them	to	build,	but	then	they’ll	tell
you	how	long	it	will	take	to	build	it.	If	the	timeline	is	too	long,	you	can’t	just	tell
them	to	code	faster;	it	won’t	work.

Instead,	 if	 you	 have	 external	 deadlines	 you	 want	 to	 hit,	 you	 need	 to	 make
tradeoffs	 and	 negotiate.	 You	 either	 need	 to	 cut	 features	 or	 find	 a	 way	 to
parallelize	the	work	and	bring	on	more	people	to	help	out.	Sometimes	you	can
be	 even	 more	 clever	 and	 find	 ways	 to	 reduce	 the	 rest	 of	 your	 engineers’
workloads,	 such	 as	 getting	 them	 out	 of	 unnecessary	meetings	 or	 having	 them
temporarily	spend	less	time	interviewing	candidates.

Not	 trusting	 the	 engineers’	 estimates	 and	 promising	 other	 teams	 that	 the	work
will	be	done	sooner	than	the	engineers	agree	to	is	one	of	the	fastest	ways	to	ruin
your	relationship	with	the	team.

8.	Product	Managers	are	the	boss.

Some	people	try	to	sell	the	PM	role	by	saying	you’re	the	CEO	of	your	team.	In
reality,	 product	managers	 have	 no	 direct	 authority	 over	 the	 team.	 The	 team	 is
never	obligated	to	do	what	the	PM	says.

Instead,	PMs	influence	without	authority,	building	up	credibility	with	the	team,

communicating	clearly,	gathering	data	and	research,	and	being	persuasive	to	lead
the	team.	Teams	follow	PMs	when	they’re	convinced	that	 their	goals	align	and
that	the	PM	will	help	them	better	achieve	their	goals.

It’s	 important	 for	 PMs	 not	 to	 try	 to	 tell	 everyone	 what	 to	 do,	 stepping	 on
designers’	or	engineers’	toes.	Designers	should	be	empowered	to	own	the	design
of	 the	 product,	 and	 engineers	 should	 be	 empowered	 to	 own	 the	 technical
implementation.	PMs	need	to	understand	those	choices	and	the	impact	they	have
on	the	overall	experience.	They	should	be	willing	to	speak	up	if	they	don’t	align,
but	PMs	shouldn’t	make	the	mistake	of	trying	to	control	those	decisions.

9.	Ideas	are	more	important	than	execution.

People	who	are	new	to	PMing	sometimes	think	that	coming	up	with	ideas	is	the
most	 important	part	of	 the	 job.	 In	practice,	execution	of	an	 idea	 is	much	more
important.	Many	different	people	on	a	team	can	come	up	with	lots	of	great	ideas,
but	the	details	are	usually	the	hard	part.

As	 a	 PM,	 it’s	 important	 to	 take	 broad	 ideas	 and	 make	 them	 tangible	 and
actionable.	Product	managers	need	to	think	about	the	corner	cases	and	figure	out
all	 of	 the	 little	 steps	 that	 need	 to	 happen	 to	make	 an	 idea	 a	 reality.	Often	 this
involves	getting	your	hands	dirty:	finding	servers	 to	run	your	code,	convincing
other	 teams	 to	 prioritize	 the	 work	 you	 depend	 on,	 and	 using	 the	 product
consistently	to	find	and	iron	out	all	the	rough	edges.

10.	You	can	say	“That’s	not	my	job.”

While	most	roles	on	the	team	are	crisply	defined,	product	managers	have	a	more
fluid	role.	When	you’re	a	product	manager,	your	job	is	anything	that	isn’t	being
covered	by	other	people.

As	a	PM,	you’re	responsible	for	 the	success	or	failure	of	your	product,	and	no
job	is	beneath	you.	If	 there’s	work	that	no	one	wants	to	do,	you	need	to	find	a
way	to	get	it	done,	even	if	that	means	doing	it	yourself.	If	you	let	the	work	slip
by,	no	one	else	will	make	sure	it	gets	caught.

Project	Managers	and	Program	Managers
Note:	Microsoft	has	 a	 role	 called	Program	Manager	 that	 is	different	 from
the	Program	Manager	role	at	most	other	software	companies,	and	is	similar
to	the	Product	Manager	role	described	earlier.

There	 are	 many	 roles	 that	 are	 related	 to	 product	 management,	 and	 the	 lines
between	the	roles	can	be	blurry.	If	you’re	looking	to	apply	for	a	project	manager
or	program	manager	role,	see	if	you	can	talk	to	people	who	have	done	the	role	at
the	companies	where	you’re	applying	to	make	sure	you	understand	the	nuances
of	the	requirements.

Project	 managers	 make	 sure	 that	 their	 projects	 get	 delivered	 on	 time	 and	 on
budget,	 to	 the	 satisfaction	 of	 the	 customer,	 whoever	 that	 may	 be.	 Program
managers	(except	for	Microsoft	program	managers)	are	similar	but	are	usually	in
charge	 of	 a	 long-running	 program	 instead	 of	 a	 series	 of	 projects	with	 set	 end
dates.

Software	companies	often	have	project	managers	leading	teams	that	are	internal-
facing,	 like	 infrastructure	 projects	 and	 operations	 programs,	 or	 leading
consulting	 teams	 that	 are	 focused	 on	 a	 single	 customer.	 This	 is	 in	 contrast	 to
product	managers,	 who	 usually	 lead	 teams	 building	 customer-facing	 products.
However,	this	isn’t	a	hard	and	fast	rule.

The	Job	of	a	Project	Manager
Two	 things	 are	unique	 about	 these	 roles.	First,	 the	project	manager	has	 a	very
clear	and	specific	customer	or	goal.

Project	managers	working	on	 infrastructure	and	operations	 teams	have	another
employee	 of	 the	 company	 as	 their	 customer.	 The	 other	 employee	 often	 has	 a
clear	and	accurate	idea	of	what	they	want	out	of	the	project.

Project	managers	working	with	a	consulting	team	serve	an	individual	customer
who	 has	 already	 signed	 a	 statement	 of	 work	 that	 includes	 the	 details	 of	 each
project.

In	 all	 of	 these	 cases,	 the	 research,	 planning,	 and	 design	 stages	 are	 fairly
straightforward,	or	already	done	by	someone	else.	For	project	managers,	product
design	is	not	usually	a	big	part	of	their	job,	so	you	may	or	may	not	get	product

design	questions.

Also,	because	the	customer	is	so	deeply	invested	in	the	outcome	of	the	project,
communication	 and	 expectation	 setting	 are	 very	 important.	 Project	 managers
need	 to	be	comfortable	 reporting	on	 the	 team’s	progress.	Being	detail	oriented
and	 closely	 involved	 with	 the	 team	 are	 important	 so	 that	 you	 can	 answer
questions	from	the	customer	and	explain	when	things	go	wrong.

The	 second	unique	part	 of	 project	 and	program	management	 is	 that	 budgeting
and	resource	management	are	a	big	part	of	the	job.	Project	managers	often	work
in	cost	centers,	so	they	focus	a	lot	on	operational	efficiency	and	reducing	costs
while	keeping	quality	up	to	par,	unlike	product	managers	who	are	often	shielded
from	those	aspects.

Here	are	 some	 types	of	budgeting	and	 resource	management	work	 that	project
managers	and	program	managers	do:
	

Clarify	goals	and	gather	satisfaction	metrics.

Determine	the	people	and	skills	needed	to	complete	a	project.

Set	up	project	management	tools,	plans	and	processes.

Run	status	meetings	and	gather	status	reports.

Analyze	data	to	identify	opportunities.

Identify	&	implement	changes	to	improve	efficiency.

Manage	changes	that	come	in	from	the	customer.

Find	ways	to	keep	the	project	on	track	even	when	things	go	wrong.

Requirements	for	project	managers	vary	from	company	to	company	and	role	to
role.	 Some	 teams	 look	 for	 project	management	 certifications,	 while	 others	 do
not.	Generally,	 companies	 look	 for	project	manager	candidates	who	have	prior
experience	managing	projects	and	excellent	communication	skills.

Companies
Chapter	3

One	of	the	biggest	questions	on	a	PM	candidate’s	mind	is	“What’s	the	difference
between	 all	 of	 these	 companies?”	 While	 the	 PM	 role	 sounds	 very	 similar	 at
many	companies,	in	practice	there	can	be	a	big	difference	in	what	day-to-day	life
is	like.

How	the	PM	Role	Varies
We	talked	 to	PMs	from	Amazon,	Apple,	Facebook,	Google,	Microsoft,	Yahoo,
and	 numerous	 startups	 to	 learn	what	 the	 product	manager	 role	 is	 like	 at	 each
company	and	what	makes	the	company	unique.

We	 learned	 that	 the	 companies	 vary	 on	 factors	 like	 transparency	 between
divisions,	work-life	balance,	and	how	much	they	value	candidates	with	technical
background	versus	business	degrees.	The	PM	role	also	varies	in	scope,	in	terms
of	 how	 much	 the	 job	 involves	 product	 definition,	 design	 work,	 strategy,	 and
project	management.

Transparency
Some	companies,	 such	 as	Google,	Facebook,	 and	Yahoo,	 are	 very	 transparent,
with	 lots	 of	 visibility	 into	 what	 other	 teams	 are	 working	 on.	 Others,	 such	 as
Apple	and	Amazon,	are	more	siloed,	with	each	team	focused	on	their	own	work.

At	 the	more	 transparent	 companies,	 you’ll	 frequently	 see	 PMs	move	 between
teams,	and	cross-team	collaboration	 is	a	big	part	of	 the	PM’s	 job.	At	 the	more
siloed	companies,	 there’s	 less	movement	and	usually	 less	of	 the	high-pressure,
cross-team	work.

Ratio	of	PMs	to	Engineers
The	ratio	of	PMs	 to	engineers	can	also	vary	widely.	Microsoft	has	many	PMs,
with	the	ratio	in	some	teams	as	high	as	1:3.	At	other	companies,	a	ratio	of	1:10	is
more	 common.	 Google	 and	 Twitter	 are	 known	 for	 having	 very	 few	 PMs	 per
engineer.	The	ratio	has	a	big	impact	on	how	closely	involved	a	PM	is	in	the	day-
to-day	work	of	the	engineers	and	how	large	a	product	she’s	responsible	for.

At	a	company	with	lots	of	PMs,	there	is	a	lot	of	collaborative	work	and	there	are
many	chances	 to	 learn	 from	people	with	more	experience.	At	 a	 company	with
few	 PMs,	 there	 is	 a	 greater	 chance	 for	 ownership	 of	 a	 large	 area	 and	 for
independent	work.

Product	Strategy
A	PM’s	 role	 in	 defining	 product	 strategy	 differs	 between	 companies.	At	 some
companies,	 the	 strategy	 is	 “bottom	up,”	where	 key	decisions	 often	 come	 from

developers	 and	 PMs.	 At	 other	 companies,	 the	 strategy	 is	 more	 “top	 down,”
where	the	direction	is	generally	decided	by	executives	and	PMs,	and	developers
are	left	to	implement	it.

At	 Google,	 Facebook,	 Yahoo,	 and	 Amazon,	 product	 managers	 are	 deeply
involved	 in	 product	 strategy,	 deciding	which	 direction	 to	 take	 the	 product	 and
when	to	start	new	initiatives.	PMs	are	expected	to	think	about	strategy	for	their
teams,	for	example,	which	customers	and	areas	 to	focus	on.	They’ll	get	advice
and	 opinions	 from	 lots	 of	 people,	 but	 ultimately	 they	 need	 to	 present	 a
compelling	plan.	Often,	PMs	at	 these	companies	can	easily	get	 an	engineering
team	 to	 build	 out	 ideas	 at	 least	 to	 the	 experimentation	 stage,	 not	 needing
executive	approval	for	launches	until	later.

Meanwhile,	 at	Microsoft	 and	 Apple,	 the	 strategy	 tends	 to	 come	 from	 the	 top
down,	while	individual	PMs	execute	on	that	strategy.	This	isn’t	to	say	that	PMs
in	 top-down	 companies	 can’t	 influence	 strategy,	 but	 many	 PMs	 won’t	 until
they’re	quite	senior.	Great	PMs	at	these	companies	influence	strategy	by	pitching
their	ideas	to	executives	and	winning	them	over.

Company	Culture
Another	 big	 difference	 is	 the	 company	 culture.	 At	 companies	 like	 Google,
Microsoft,	Yahoo,	and	Facebook,	there’s	a	lightheartedness	during	the	work	day.
These	companies	are	proud	of	their	excellent	perks	such	as	free	food	and	drinks,
or	even	free	massages.	And	while	people	may	work	 long	hours,	 they’ll	always
say	 that	 the	quality	 of	 their	work	 is	more	 important	 than	 the	number	of	 hours
they	put	in.

On	the	other	hand,	some	companies,	such	as	Apple	and	Amazon,	have	a	culture
where	 employees	 are	 proud	 of	 how	 hard	 they	work.	At	 these	 companies,	 it	 is
expected	that	employees	work	long	hours,	and	frugality	is	valued.	Employees	at
these	companies	are	so	inspired	by	the	company’s	mission	that	they’re	happy	to
work	 weekends	 or	 take	 calls	 late	 at	 night.	 Building	 an	 amazing	 product	 isn’t
meant	to	be	easy.

Who	they	recruit
Amazon	 prefers	 MBAs	 for	 the	 product	 manager	 role	 and	 doesn’t	 consider	 a
technical	background	to	be	critical.	This	is	one	of	the	few	companies	that	don’t
hire	 new	 college	 graduates	 into	 the	 product	manager	 role.	 They	 do,	 however,

accept	 new	 graduates	 as	 program	managers	 or	 technical	 program	managers,	 a
related	role	that	skews	more	towards	project	management	than	product	design.

Apple	 hires	 for	 both	 hardware	 and	 software	 EPM	 (engineering	 program
manager)	roles,	so	it’s	a	good	choice	for	people	with	a	background	in	electrical
engineering	or	computer	science.	Apple	hires	new	college	graduates	and	doesn’t
tend	to	hire	people	with	MBAs	as	engineering	program	managers.

Facebook	is	the	most	technical	of	the	group,	requiring	that	all	product	managers
be	technical.	The	company	values	its	entrepreneurial	“hacker”	culture	and	has	a
substantial	number	of	PMs	who	were	founders	of	acquired	companies,	as	well	as
quite	a	few	ex-Google	PMs.	They	hire	new	college	graduates	into	the	rotational
product	manager	role,	which	includes	3	four-month	rotations	across	teams.

Google	prefers	to	hire	new	college	graduates,	usually	computer	science	majors,
starting	 them	 in	 the	 associate	 product	 manager	 (APM)	 program,	 a	 two-year
rotational	 program.	 Some	 Google	 PMs	 have	 MBAs,	 but	 Google	 places	 more
emphasis	on	master’s	degrees	or	PhDs.

Yahoo	mostly	hires	 experienced	PMs	but	 has	 also	 started	 an	 associate	 product
manager	 program	 to	 hire	 new	 graduates.	 Yahoo	 values	 people	 with	 technical
backgrounds	 who	 can	 communicate	 well	 with	 engineers.	 They	 look	 for
passionate	people	with	good	product	sense	and	who	are	entrepreneurial,	but	also
have	 a	 realistic	 sense	 of	 what	 it	 means	 to	 deliver	 software	 to	 hundreds	 of
millions	of	users.

Microsoft	 hires	 both	 new	 college	 graduates	 and	 experienced	 hires	 for	 the
Program	Manager	 role	 and	 prefers	 a	 technical	 background,	 though	 it	 doesn’t
have	to	be	specifically	computer	science.	Separately,	Microsoft	hires	MBAs	into
the	product	manager	role,	which	is	a	marketing	role	at	Microsoft.	Microsoft	does
well	at	recruiting	internationally	and	hires	many	PMs	from	outside	the	US.

Google
Google’s	 structure	 reflects	 its	 startup	 roots.	 Google	 is	 passionate	 about
innovation	 and	 really	 values	 a	 culture	 where	 great	 ideas	 can	 become	 reality.
Google’s	 vision	 comes	 from	 the	 bottom	 up,	 and	 teams	 are	 often	 engineering
driven.	 Product	 managers	 focus	 on	 strategy,	 analysis,	 and	 facilitation	 of	 the
engineering	team.

One	 thing	 that	makes	Google	 unique	 is	 the	 incredible	 transparency	 across	 the
organization.	 Most	 code	 and	 documentation	 is	 available	 to	 any	 full-time
Googler,	and	the	executive	team	takes	questions	from	all	Googlers	at	the	weekly
all-hands	 “TGIF”	 presentation.	 It’s	 not	 unusual	 for	 Google	 PMs	 to	 switch
product	teams	during	their	career	at	Google.

Who	they	recruit
Google	 looks	 for	 entrepreneurial	 self-motivated	 people	 who	 love	 technology.
Candidates	with	MBAs	or	more	 than	 four	 years	 of	 experience	 join	 as	 product
managers,	 while	 those	 with	 fewer	 than	 four	 years	 of	 experience	 apply	 to	 be
associate	product	managers	(APMs).

The	APM	program	 is	 an	 elite	 two-year	 product	management	 training	 program
for	 new	 graduates.	 APMs	 are	 given	 important	 product	 management	 roles	 on
teams	 across	 the	 company,	 along	 with	 training,	 networking	 opportunities,	 a
midpoint	 job	 rotation,	 and	 an	 international	 business	 trip	 to	meet	Googlers	 and
customers	around	the	world.

What	they	do
Google	has	 a	 lot	of	products,	 and	 the	product	management	 role	 can	vary	a	 lot
across	teams.	While	product	design	thinking	and	analytical	skills	are	important
in	all	of	the	roles,	the	balance	will	vary	a	lot	across	products	like	Google	Search,
Adwords,	Gmail,	Android,	YouTube,	Google	Plus,	and	Google	Maps.

The	Search	team	tends	to	be	very	research	driven,	with	engineers	taking	the	lead
on	inventing	new	algorithms.	For	advertiser-facing	teams,	PMs	gather	customer
requirements	and	communicate	those	needs	to	the	rest	of	the	team.	On	teams	like
Google	 Plus,	 designers	 are	 central	 to	 the	 team,	 while	 developer-facing	 teams
might	not	have	a	designer	at	all.

PMs	 at	 Google	 work	 independently.	 PMs	 join	 a	 team,	 and	 it’s	 up	 to	 the
individual	PMs	and	their	 teams	to	decide	what	 they’re	going	 to	build.	Often,	a
PM’s	first	project	at	Google	is	to	figure	out	what	they	should	be	working	on.

Many	 products	 have	 only	 one	 PM,	 and	 for	 those	 that	 have	more,	 the	work	 is
usually	cleanly	partitioned	so	that	each	PM	owns	a	full	area.	In	 the	day-to-day
work	as	a	Google	PM,	you’ll	work	most	closely	with	your	engineering	team	and
designer.	Many	 new	 ideas	 come	 from	 PMs,	 engineers,	 and	 designers	 drawing
ideas	on	whiteboards	and	then	quickly	building	prototypes.

Google	strongly	values	analytical	skills	in	its	PMs,	since	data	analysis	can	be	a
big	part	of	a	PM’s	job.	PMs	frequently	look	through	the	usage	logs	to	come	up
with	 ideas	 for	 new	projects	 in	 the	Search	 and	Ads	divisions.	Once	 a	 team	has
built	something,	Google	makes	it	easy	to	try	it	out	in	front	of	a	tiny	percentage
of	users.	Then	the	data	starts	rolling	in,	and	the	PM	analyzes	the	data	(or	works
with	data	analysts)	to	see	if	the	changes	were	an	improvement.

A	big	part	of	the	PM	job	at	Google	is	getting	projects	in	shape	for	launch.	Since
even	small	changes	will	be	seen	by	many	millions	of	users,	it’s	important	to	get
all	of	the	pieces	right,	including	the	UI	and	algorithms.	A	project	must	also	meet
security,	 legal,	 and	 infrastructure	 requirements.	 Many	 projects	 go	 through
multiple	rounds	of	iteration	before	getting	a	final	approval.

Innovation
To	 encourage	 innovation,	Google	 has	 a	 program	 called	 “20%	 time.”	 This	 is	 a
policy	where	 engineers	 and	PMs	 can	 spend	 20%	of	 their	 time	 on	 a	 company-
related	 side	project.	To	 start	 a	 20%	project,	 you	don’t	 need	 any	 approval;	 you
just	start	working	on	it.	There	are	internal	sites	where	you	can	post	your	project
and	try	to	recruit	other	people	to	join	you.	Many	big	products	at	Google	such	as
Gmail,	Google	News,	and	Orkut	started	in	someone’s	20%	time.

All	of	this	innovation	and	freedom	can	make	Google	a	PM’s	dream.	If	you	have
a	project	you’re	passionate	about,	not	only	do	you	get	the	time	and	freedom	to
work	on	it,	but	you’re	also	surrounded	by	brilliant	engineers	who	have	extra	time
to	help	out!

Microsoft
Microsoft	 originated	 the	 PM	 role	 in	 the	 1980s	 when	 they	 realized	 that	 they
needed	someone	between	the	marketing	and	engineering	teams	who	focused	on
making	the	product	usable	for	customers.

At	Microsoft,	the	program	manager	role	is	unique	in	scope	and	influence.	A	PM
serves	as	a	business	analyst,	a	project	manager,	and	a	creative	force.	Microsoft
also	has	one	of	the	highest	PM-to-developer	ratios.	These	combine	to	make	the
Microsoft	PM	role	a	very	hands-on	position.	Teams	are	 frequently	PM-driven,
with	the	program	manager	making	every	user-facing	decision.

As	one	of	the	older	tech	companies,	Microsoft	has	developed	a	strong	focus	on
career	 growth.	 They’ve	 learned	 that	 employees	 want	 to	 see	 their	 careers
progressing	 and	 have	 built	 a	 system	 where	 people	 can	 grow	 not	 only	 by
becoming	team	leads,	but	also	by	becoming	responsible	for	larger	products	and
more	product	strategy.	Microsoft	is	a	company	where	many	employees	expect	to
spend	their	whole	career.

Who	they	recruit
Microsoft	 looks	 for	 program	managers	 who	 are	 big-picture	 thinkers,	 who	 can
solve	problems,	and	who	can	get	stuff	done.

Uche	 from	Microsoft	 says,	 “We	 wants	 people	 with	 inquisitive	 minds.	 People
who	look	at	things	from	multiple	perspectives.	As	a	PM,	you’ll	wear	many	hats,
so	how	you	think	is	more	important	than	any	particular	technical	skill.”

Microsoft	has	two	roles	related	to	program	management	that	are	usually	filled	by
people	with	MBAs:	product	managers	and	product	planners.	Product	managers
at	Microsoft	 are	 on	 the	 marketing	 team,	 identifying	 market	 opportunities	 and
developing	strategies	for	moving	on	those	opportunities,	focused	on	the	current
release.	 Product	 planners	 are	 looking	 further	 ahead,	 identifying	 market	 and
technology	trends	to	come	up	with	new	product	scenarios.

What	they	do
On	Microsoft	 products,	 the	 vision	 and	 strategy	 often	 come	 from	 the	 top	 and
work	their	way	down.

For	 example,	 the	VP	 in	 charge	 of	Microsoft	 Office	will	 work	with	 the	 group
program	managers	to	create	and	share	a	vision	document	with	the	main	areas	of
focus	 for	 the	 next	 release.	 The	 people	 in	 charge	 of	 each	 Office	 product	 will
define	the	vision	for	their	product	so	it	falls	in	line	with	the	overall	Office	vision.
Then	 each	 of	 the	 team	 leads	 uses	 the	Office	 vision	 and	 the	 product	 vision	 to
develop	visions	for	their	feature	areas.

The	 result	 is	 that	 the	 product	 strategy	 at	 Microsoft	 within	 a	 division	 is	 very
cohesive.	The	 teams	 feel	 like	 they’re	working	 together	 towards	 the	 same	goal,
and	it’s	rare	to	find	two	teams	that	are	working	on	competing	features.	As	your
career	advances	at	Microsoft,	you	pick	up	larger	and	larger	pieces	of	the	strategy.

The	 top-down	 vision	 makes	 it	 hard	 to	 make	 big	 changes	 in	 direction	 in	 the
middle	of	a	 launch	cycle.	Even	 if	 the	 idea	 is	great,	 it’s	hard	 to	find	developers
with	 spare	 time	 to	 build	 it.	 On	 the	 other	 hand,	 you’re	 generally	 working	 on
features	that	everyone	agrees	are	important.	This	means	that	you	can	spend	your
energy	trying	to	build	something	great	instead	of	convincing	management	to	let
you	launch	the	great	thing	you	built.

As	 a	 new	PM	at	Microsoft,	 you’ll	 be	 put	 in	 charge	of	 feature	 areas	 that	work
with	the	team’s	vision,	and	you	will	be	given	a	lot	of	freedom	and	responsibility
to	make	 those	parts	of	 the	product	great.	As	you	prove	yourself	on	your	 early
teams,	you’re	given	more	and	more	responsibility.

The	 core	 feature	 team	 at	Microsoft	 includes	 a	 developer,	 a	 program	manager,
and	a	tester.	Recently,	some	teams	are	bringing	a	designer	into	the	core	feature
team.	Together	the	core	feature	team,	led	by	the	PM,	decides	what	to	build.	On
many	 teams,	 the	 PM	 starts	 by	 writing	 a	 one-page	 “spec”—a	 high-level
description	of	the	goals	and	use	cases.

After	reviewing	the	one-page	spec	with	other	program	managers	on	the	product,
the	PM	may	expand	the	one-page	spec	into	a	detailed	spec	that	describes	exactly
how	the	 feature	will	work,	 from	high-level	 flows	down	 to	 the	 text	of	 the	error
messages.	 The	 PM	 might	 also	 work	 with	 a	 designer	 or	 may	 do	 all	 of	 the
interaction	design	herself.	This	is	team	dependent	though.

Once	 the	 spec	 is	 reviewed	and	 implementation	 starts,	dogfooding	 (trying	early
builds	of	 the	software	 internally)	becomes	very	 important.	Especially	on	 teams
with	 slow	ship	cycles,	PMs	at	Microsoft	gather	 feedback	 from	other	people	 at

the	company.	As	 that	 feedback	comes	 in,	 the	PM	prioritizes	 the	bugs	and	new
feature	ideas.

Outside	 of	 the	 core	 feature	 work,	 PMs	 will	 also	 take	 on	 some	 team-wide	 or
cross-team	 responsibilities.	 One	 example	 is	 running	 the	 project	 management
schedule	for	the	product	or	running	a	pre-launch	triage	process	to	decide	which
bugs	to	fix	or	which	features	to	implement.

As	 Microsoft	 adjusts	 to	 its	 new	 reorganization	 as	 a	 devices	 and	 services
company,	 the	 spec-heavy	 process	 is	 being	 replaced	 with	 a	 more	 agile	 and
iterative	approach	on	many	teams.	Teams	are	starting	to	launch	faster	and	more
frequently.	A/B	testing	is	becoming	more	prominent.

Apple
Apple	 has	 a	 top-down,	 siloed	 structure.	 The	 product	 direction	 is	 tightly
controlled	by	 the	executive	 team	and	designers,	while	 the	 rest	of	 the	company
executes	 that	 vision	 like	 a	 well-oiled	 machine.	 At	 Apple,	 engineering	 project
managers	 and	 engineering	 program	 managers	 (EPMs)	 are	 the	 leaders	 of	 the
product	who	keep	that	machine	running.

Who	they	recruit
Apple	 looks	 for	 people	 who	 live	 and	 breathe	 Apple	 products.	 While	 many
companies	take	pride	in	supporting	a	healthy	work/life	balance,	Apple	looks	for
people	so	passionate	about	the	end	product	that	it	is	their	life.

For	 the	 EPM	 role,	 they’re	 generally	 looking	 for	 someone	 with	 a	 strong
background	in	science	and	math	(so	that	he	can	“figure	things	out”)	and	with	a
good	 demeanor	 (so	 that	 he	 comes	 across	 appropriately	 confident).	 Also,	 they
want	someone	who’s	technically	fluent	enough	to	be	part	of	the	discussion,	but
who	won’t	necessarily	try	to	do	any	of	the	engineers’	job	for	them.

Since	 Apple	 has	 many	 hardware	 projects,	 they	 hire	 for	 hardware	 EPMs	 and
system	EPMs,	 in	addition	 to	 software	EPMs.	Software	EPMs	generally	have	a
background	in	computer	science,	while	hardware	EPMs	may	have	a	background
in	 another	 engineering	 field	 like	 electrical	 engineering	 or	 mechanical
engineering.

EPMs	at	Apple	come	from	all	levels	of	experience,	from	new	college	graduates
to	people	with	15	years	of	industry	experience.	Most	EPMs	come	to	Apple	from
engineering	 school	or	engineering	 roles	 rather	 than	 from	business/management
degrees,	MBAs,	or	former	EPM	positions	at	other	companies.

Apple	 also	 has	 a	 product	marketing	manager	 role,	which	 they	 sometimes	 call
product	manager.	For	product	marketing	manager,	 they	 look	 for	 people	with	 a
background	 in	business	or	marketing.	MBA	graduates	 are	often	hired	 into	 this
role.

What	they	do
Early	ideas	at	Apple	can	come	from	the	top	down	or	from	the	bottom	up	and	are

shaped	over	a	series	of	reviews	with	the	executive	team	or	senior	management,
driven	 by	 EPMs.	 Product	 managers	 do	 customer	 research	 and	 look	 at	 market
trends	 to	 identify	 strategic	 areas	 for	 the	 next	 release.	 Once	 the	 product	 is
approved,	 the	 EPM	 leads	 the	 engineering	 teams	 to	 build	 the	 product,	 creating
development	 schedules,	 facilitating	 cross-functional	 communication,	 and
spearheading	issues	as	they	arise.

Products	 at	Apple	 involve	 coordination	 across	many	 teams,	 and	 the	EPMs	 are
the	hub	of	that	communication,	making	sure	things	are	running	on	schedule	and
solving	 problems	 when	 they’re	 not.	 For	 example,	 building	 a	 hardware	 device
involves	 coordinating	 work	 across	 mechanical	 design	 teams,	 electrical	 design
teams,	external	contract	manufacturers,	and	operations	teams.

A	 typical	 day	 for	 an	 EPM	 in	 Cupertino	 involves	 a	 lot	 of	 communication:
presenting	 the	 team’s	 progress,	 learning	 about	 the	 status	 of	 other	 teams,	 and
reviewing	the	current	status	with	executives.	Throughout	 these	discussions,	 the
EPM	is	responsible	for	surfacing	issues	and	finding	ways	to	resolve	them.

For	 software	 EPMs,	 a	 big	 part	 of	 the	 day	 is	 testing	 the	 daily	 builds,	 finding
blocking	issues,	and	making	sure	they	get	fixed	in	a	timely	manner.

System	 EPMs	 focus	 on	 delivering	 the	 whole	 product.	 They	 plan	 and	 lead
prototype	builds	that	dozens	of	Apple	engineers	travel	overseas	for.	In	addition
to	being	 the	 face	of	 the	Apple	engineering	 team	at	contract	manufacturers,	 the
system	EPM	is	responsible	for	cooperatively	driving	failure	analysis	to	closure,
reconciling	development	hardware	demands,	and	removing	obstacles	that	block
prototype	builds.	The	system	EPM	is	the	leader	of	the	project	within	Apple	and
pulls	together	other	EPMs	and	engineers	to	deliver	a	product.

Hardware	 EPMs	 focus	 on	 the	 hardware	 deliverables	 for	 a	 product,	 including
circuit	 boards	 and	 flexes.	 They	work	 hand	 in	 hand	with	 electrical	 engineering
teams,	 product	 design	 teams,	 silicon	 teams,	 and	 external	 vendors.	Day	 to	 day,
they	are	involved	in	silicon	planning	and	supply-chain	management,	and	they	are
often	 tasked	 with	 reaching	 consensus	 on	 difficult	 cross-functional	 design
decisions.

Facebook
Facebook	 is	 a	 scrappy,	 engineering-focused	 company.	There	 are	 relatively	 few
product	managers;	many	 teams	 start	without	 a	product	manager,	only	bringing
one	in	after	the	need	is	obvious.	Even	when	a	team	has	more	than	one	PM,	the
areas	will	be	big	enough	that	each	person	is	working	independently.

Who	they	recruit
Facebook	has	a	unique	set	of	PMs.

Facebook	looks	for	highly	technical	and	entrepreneurial	PMs.	At	Facebook,	all
product	 managers	 are	 expected	 to	 code	 (or	 at	 least	 learn	 the	 basics)	 and	 go
through	 Facebook	 Bootcamp,	 a	 six-week	 program	 where	 PMs	 and	 engineers
learn	 the	 tools	 and	 fix	bugs.	This	 fits	 into	 the	do-it-yourself	 culture;	PMs	will
often	code	up	initial	prototypes	of	their	product	on	their	own.

When	Facebook	acquires	a	company	for	the	purpose	of	recruiting	its	employees,
it’s	 referred	 to	 as	 acqui-hiring.	When	 acqui-hiring	 a	 team,	Facebook	 looks	 for
small	 teams,	 usually	 fewer	 than	 10	 people,	 composed	 mostly	 of	 engineers.
Often,	 the	 founder	 or	 CEO	 of	 the	 company	 will	 be	 brought	 on	 as	 a	 product
manager.

New	 graduates	 and	 people	 without	 product	 management	 experience	 join	 the
rotational	Product	Manager	Program.	This	is	a	one-year	program	consisting	of	3
four-month	rotations	on	different	teams.

What	they	do
At	Facebook,	there	are	some	planned	company	initiatives,	but	many	ideas	spring
up	from	watching	how	people	use	the	site	and	the	problems	they	hit.	PMs	will
notice	an	area	that	needs	attention	and	put	together	a	storyboard	and	proposal	for
what	they	want	to	build,	including	the	expected	outcome.	Because	PMs	have	so
much	 freedom,	 it’s	 important	 to	 know	 how	 to	 position	 your	 ideas	 into	 the
framework	of	the	company	and	show	how	they	fit	into	the	overall	mission.

Then,	 the	 team	will	 build	 a	 prototype	 to	 test	 in	 a	 small	market	 and	 see	 if	 the
expected	outcome	happens.	If	all	goes	well,	things	go	into	motion.	The	PM	will
review	the	proposal	with	Mark	Zuckerberg	(whom	everyone	calls	“Zuck”)	or	the

division	head	 to	get	approval.	Then	 the	 team	brings	 in	designers	and	 turns	 the
feature	on	internally	to	start	getting	feedback	from	other	people	at	Facebook.

During	 development,	 the	 product	 manager	 iterates	 through	 product	 reviews.
There’s	not	much	project	management	overhead,	but	PMs	can	watch	the	logs	to
see	new	code	as	soon	as	the	engineers	check	it	in.	When	everything	is	ready,	the
PM	coordinates	a	rollout	plan	and	works	with	marketing	for	the	launch.

Amazon
Amazon’s	 culture	 is	 guided	 by	 their	 14	 Leadership	 Principles	 (see:	 Amazon
Leadership	 Principles).	 While	 many	 companies	 may	 have	 their	 own	 set	 of
principles,	Amazon’s	Leadership	Principles	play	a	real	role	both	in	hiring	and	in
day-to-day	 work.	 In	 meetings,	 people	 will	 cite	 leadership	 principles	 to	 help
resolve	decisions,	and	interviewers	will	look	for	these	qualities	in	candidates.

Who	they	recruit
Amazon	 has	 a	 lot	 going	 on.	 There	 are	 new	 initiatives	 being	 started,	 technical
operational	programs	that	are	ongoing,	and	non-technical	operational	programs.
There	are	teams	that	focus	on	audiences	as	diverse	as	consumers,	publishers,	and
developers.	Because	of	this,	there	are	many	different	roles	that	relate	to	product
and	program	management.

Product	managers	are	the	product	owners.	They	focus	on	the	vision	of	a	product.
Amazon	prefers	MBAs	for	 the	product	manager	role	and	will	hire	people	right
out	of	business	school.	Unlike	many	other	companies,	Amazon	does	not	require
PMs	to	have	a	technical	background.

Technical	 program	 managers	 are	 responsible	 for	 the	 day-to-day	 execution	 of
technical	 projects.	 TPMs	 need	 a	 strong	 technical	 background	 and	 can	 come
directly	out	of	 school	or	by	 transferring	 from	an	engineering	 role.	TPMs	work
closely	with	engineers.

Program	managers	are	responsible	for	the	project	management	of	non-technical
projects,	 such	 as	 those	 on	Operations.	 Program	managers	 can	 come	 from	 any
background,	but	skill	with	SQL	is	a	plus.	Amazon	looks	for	program	managers
who	 are	 smart,	 fast,	 and	 can	 work	 under	 pressure.	 Program	 managers	 are
responsible	for	running	and	improving	the	team’s	processes.

What	they	Do
Product	managers	own	 the	vision	 and	 roadmap	 for	 their	 team.	Amazon	values
customer	 obsession,	 and	 many	 new	 ideas	 will	 come	 from	 figuring	 out	 what
customers	want	and	need.	This	can	be	from	talking	to	customers	directly	or	by
looking	 at	 data	 that’s	 available	 via	SQL.	Amazon	 is	 very	data	 driven,	 so	PMs
need	to	have	strong	analytical	skills.

When	a	PM	comes	up	with	an	idea,	he	puts	together	a	business	case	in	a	memo,
also	 called	 a	 narrative.	 This	 document	 will	 cover	 the	 details	 of	 the
recommendation	 and	 analysis	 that	 supports	 it,	 especially	 including	 numbers
about	 the	 impact	 and	 rationale.	 Amazon	 focuses	 on	 documents	 instead	 of
presentations	 for	 new	 proposals	 because	 documents	 force	 the	 author	 to	 be
precise	and	show	clear	thinking.

After	 initial	 rounds	 of	 revisions	 and	 redlines,	 the	 proposal	 is	 then	 shared	with
upper	management	 in	 a	meeting	 that	 starts	 with	 everyone	 silently	 reading	 the
document	 at	 the	 same	 time.	 This	 process	 might	 seem	 strange	 at	 first,	 but	 it
guarantees	 that	 everyone	 has	 time	 to	 read	 the	 details	 of	 the	 proposal	 and	 gets
everyone	focused.	After	everyone	has	read	 the	document,	people	ask	questions
about	it.

The	proposal	may	 then	go	 through	a	 few	more	 rounds;	 the	key	 is	precision	 in
drawing	 a	 line	 from	 inputs	 to	 expected	 outcomes.	 After	 the	 proposal	 has	 the
green	 light,	 the	 team	 starts	 building	 it.	 Many	 teams	 follow	 an	 Agile	 process,
where	the	PM	is	the	product	owner	and	is	responsible	for	writing	user	stories	and
the	team’s	backlog.

When	products	are	ready	for	launch,	the	PM	works	with	the	marketing	team	and
prepares	for	a	hand	off	 to	 the	Operations	 team	that	will	 run	the	program	on	an
ongoing	basis.

Yahoo
Yahoo	has	 a	 strong	 legacy:	 at	 one	point,	 “Yahoo”	was	 synonymous	with	 “The
Internet”	for	many	people.	The	company	has	gone	through	a	series	of	transitions
in	the	last	several	years,	but	in	2012,	Marissa	Mayer	was	appointed	as	CEO,	and
she	 brought	 renewed	 energy	 and	 passion	 into	 the	 company.	Web	 traffic	 is	 up,
many	recent	product	announcements	and	launches	have	been	well	received,	and
you	can	see	a	clear	change	in	perception	both	internally	and	externally.

PMs	who	work	at	Yahoo	love	the	excitement	of	having	such	a	clear	challenge.
They’re	 now	 focused	 on	 getting	 back	 into	 the	 hearts	 and	 minds	 of	 users	 by
putting	 their	needs	 first.	With	a	 former	product	manager	at	 the	helm,	Yahoo	 is
strongly	product	driven	and	looking	to	build	products	that	users	love.

Who	they	recruit
PMs	 at	 Yahoo	 generally	 have	 a	 CS	 degree,	 although	 it’s	 not	 required.	 Yahoo
looks	 for	 talent	 with	 strong	 engineering	 background	 demonstrated	 through
academic	achievements	and/or	work	experience	at	a	top-tier	software	company.

Today,	Yahoo	has	a	great	mix	of	PMs:	some	have	been	at	Yahoo	for	a	long	time,
others	have	joined	recently	from	other	tech	companies,	and	still	others	are	fresh
out	 of	 college.	 While	 each	 Yahoo	 PM	 possesses	 a	 different	 background	 and
experience,	they	all	have	one	common	goal	of	bringing	Yahoo	products	and	its
experiences	to	the	next	level.

Yahoo	 started	 the	Associate	 Product	Manager	 (APM)	 Program	with	 a	 goal	 of
hiring	 talented	 new	 graduates.	 It’s	 a	 two-year	 rotational	 program	with	 regular
training	presentations	from	people	across	the	company	and	a	global	business	trip
in	the	middle.	Two	things	that	make	the	Yahoo	APM	program	stand	out	are	that
APMs	 learn	 which	 team	 they’re	 on	 before	 they	 start	 working	 and	 that	 the
organizers	are	focusing	on	getting	all	of	the	APMs	into	big,	challenging	roles.

What	they	do
Teams	at	Yahoo	are	often	organized	into	a	trio	of	engineer,	product	manager,	and
designer,	with	one	person	serving	as	the	group	lead.	The	group	lead	is	oftentimes
a	product	manager.

The	product	manager	is	responsible	for	setting	the	overall	direction	and	strategy
for	products,	making	sure	the	user	experience	is	solid	and	developing	long-term
growth.	This	includes	the	user-experience	and	long-term	monetization	plans,	and
teams	are	no	longer	pressured	to	look	for	short-term	revenue	wins.

Yahoo	has	a	strong	culture	of	collaboration,	and	ideas	come	from	every	corner	of
the	company.	Getting	the	mobile	experience	right	for	Yahoo’s	core	products	is	a
key	driver	of	the	company’s	efforts.

Most	 Yahoo	 PMs	 are	 very	 technical,	 and	 PMs	 are	 well	 respected	 within	 the
company.	PMs	are	 involved	 in	 the	full	spectrum	of	 the	product	 life	cycle;	 they
run	 experiments,	 work	 closely	 with	 cross-functional	 teams,	 and	 oversee	 the
entire	 launch	process.	There	 is	 an	official	 review	process	 for	product	 launches
that	 helps	 keep	 the	 quality	 bar	 of	 the	 products	 high	 before	 they	 are	 made
available	to	users.

Teams	 at	 Yahoo	 are	 moving	 a	 lot	 faster,	 and	 many	 are	 picking	 up	 Agile
processes.	Many	teams	work	in	short	iterations.	Instead	of	long,	detailed	specs,
PMs	now	might	just	write	a	one-sentence	user	story,	and	the	engineers	will	make
decisions	and	get	it	out.

Twitter
Twitter	is	a	rapidly	growing	company	working	on	the	future	of	communication.
Since	 Twitter	 is	 growing	 so	 fast	 in	 terms	 of	 users	 and	 headcount,	 the
organization	is	constantly	changing	and	evolving.	This	growth	also	opens	a	lot	of
opportunities	for	people	to	move	around	and	grow	their	roles.

Who	they	recruit
Twitter	hires	people	who	are	passionate	about	Twitter.	They	look	for	people	who
love	the	product,	the	company,	or	the	mission.

Twitter	hires	for	two	related	roles:	product	manager	(PM)	and	technical	program
manager	 (TPM).	 Product	 managers	 usually	 work	 on	 customer-facing	 teams.
Technical	 program	 managers	 usually	 work	 on	 platform	 or	 infrastructure
initiatives,	 often	 across	 multiple	 teams.	 The	 PM	 role	 includes	 more	 product
design,	while	the	TPM	role	involves	more	project	management.

For	 the	 technical	 program	 manager	 role,	 Twitter	 looks	 for	 people	 with	 a
technical	background	and	experience	in	software	delivery.	In	addition,	they	look
for	 a	 “get	 things	 done”	 mentality	 and	 excellent	 communication	 skills.	 Many
TPMs	 come	with	 program	management	 experience,	 but	many	 also	 come	 from
backgrounds	 such	 as	 consulting,	 engineering	 management,	 or	 technical
architecture.

For	 the	 product	 manager	 role,	 Twitter	 looks	 for	 people	 with	 a	 single-minded
focus	on	the	user	and	who	are	flexible	enough	to	handle	the	fast	pace.	Because
Twitter	has	relatively	few	PMs	per	engineer,	they	usually	hire	more	experienced
candidates	who	can	keep	up	with	the	work.

What	they	do
Product	 managers	 at	 Twitter	 wear	 a	 bunch	 of	 hats.	 Teams	 are	 made	 up	 of
product,	 engineering,	 and	 design.	 PMs	 are	 involved	 in	 concepts	 and
roadmapping	as	well	as	finding	bugs,	prioritizing	features,	executing	on	current
projects,	and	thinking	about	the	future.	The	PM	serves	as	the	interface	between
the	feature	area	and	the	rest	of	the	company.

The	 technical	 program	manager	 role	 is	 relatively	 new	 at	 Twitter	 and	 in	 some

ways	 is	 still	 being	 defined.	 There	 are	 several	 different	 types	 of	 TPMs,	 and
Twitter	is	building	career	paths	for	all	of	them.

Some	TPMs	are	responsible	for	release	management:	shepherding	the	web	and
mobile	releases,	making	sure	the	builds	get	 in,	running	the	dogfooding	process
(where	 Twitter	 employees	 try	 out	 the	 new	 builds),	 and	making	 sure	 bugs	 get
fixed.

Other	 TPMs	 manage	 broad	 programs	 across	 many	 teams	 with	 hundreds	 of
people	 including	 external	 people	 across	 companies.	 Other	 TPMs	 are	 thought
leaders	 on	 cross-team	 topics	 like	 the	 Agile	 process.	 Still	 other	 TPMs	 are
embedded	in	a	single	platform	or	infrastructure	team.

Ideas	at	Twitter	come	from	all	over	the	company:	management,	PMs,	engineers,
designers,	and	people	in	other	roles	like	user	services.	One	way	Twitter	supports
this	is	with	a	quarterly	hack	week	where	people	can	work	on	whatever	they	want
as	long	as	it’s	related	to	Twitter.	Many	great	ideas	come	out	of	hack	week,	and
people	can	use	the	time	to	build	buzz	around	their	ideas.

Planning	at	Twitter	happens	quarterly,	 and	 teams	are	 responsible	 for	 their	own
goals	 (called	 “gulls,”	 since	 Twitter	 likes	 to	 name	 things	 after	 birds).	 During
implementation,	teams	constantly	dogfood	(try	new	features	out	internally)	and
present	what	they’re	working	on	through	weekly	meetings.

The	company	runs	many	A/B	tests	and	is	data	driven.	However,	it	is	also	careful
about	being	too	data	driven.	Teams	use	the	metrics	to	understand	how	things	are
performing	against	success	metrics	and	then	make	changes	as	necessary,	but	they
still	make	sure	they	move	quickly	and	keep	the	spirit	of	the	product	intact.

Startups
Startups	 can	 be	 great	 places	 for	 PMs	 to	 make	 an	 impact	 and	 have	 a	 part	 in
shaping	their	own	role.	More	so	than	at	 larger	companies,	product	managers	at
startups	 really	 have	 to	wear	 a	 lot	 of	 hats	 and	 find	 scrappy	ways	 to	 get	 things
done.

One	of	the	best	ways	to	get	signal	on	the	culture	at	a	startup	is	to	look	at	where
the	founders,	PMs,	and	early	employees	came	from.	Since	product	management
doesn’t	 have	 a	 single,	 well-known	 definition,	 teams	 generally	 bring	 along	 the
definition	 that	 they	 learned	 from	their	past	companies.	A	company	founded	by
ex-Apple	 employees	will	 tend	 to	 have	 elements	 of	Apple’s	 culture,	while	 one
founded	by	ex-Google	employees	will	tend	to	be	more	similar	to	Google.

Once	you’re	ready	to	learn	more	about	a	startup,	it	can	also	make	a	lot	of	sense
to	reach	out	and	try	to	get	coffee	with	someone	on	the	product	team.	At	a	startup,
all	 of	 the	 employees	 are	 often	 involved	 in	 recruiting,	 so	 they’ll	 generally	 be
happy	to	chat.	Plus,	they	work	at	a	startup,	so	they	probably	need	that	coffee!

Who	they	recruit
Startups	vary	a	lot	in	the	profile	and	skills	they	look	for.	In	general,	they’re	more
likely	 to	 look	 for	 people	with	 experience	 shipping	 software	 and	 less	 likely	 to
consider	new	graduates	unless	the	company	already	has	a	large	PM	team.

For	startups,	culture	fit	and	passion	for	the	company	are	really	important.	While
a	 big	 company	 might	 be	 satisfied	 that	 your	 reason	 for	 wanting	 to	 join	 the
company	is	“I	want	to	work	with	a	great	team	and	have	a	big	impact,”	that’s	not
going	to	fly	at	a	startup.	They’ll	want	to	hear	a	much	more	specific	story	about
why	you’re	interested	in	their	space.

Getting	the	job
If	 you’re	 looking	 to	 land	 an	 early	 PM	 job	 at	 a	 startup,	 making	 a	 strong
impression	with	your	vision	 for	 the	 future	of	 their	 industry	 can	help	you.
Shalendra	Chhabra	(Shalen),	now	director	of	marketing	at	 Indix,	was	able
to	get	hired	as	an	early	PM	at	two	different	startups	by	using	this	approach,
despite	lacking	strong	connections	to	the	companies.

When	he	was	looking	for	a	new	job,	he	brainstormed	a	list	of	startups	with
a	 friend.	 Swype,	 a	 company	 that	 makes	 on-screen	 keyboards	 for	 touch
devices,	 was	 on	 that	 list.	 He	was	 interested	 in	 the	 company	 and	wrote	 a
memo	 about	 how	 he	 saw	 the	 future:	 touch	 devices	 would	 explode	 in
popularity,	and	they	would	want	to	expand	into	different	languages	and	add
new	features	such	as	predictive	tap.

In	the	memo,	he	described	how	his	background	and	skills	would	add	value
to	the	company.	He	then	was	able	to	get	an	introduction	to	someone	at	the
company	through	a	friend	of	a	friend	and	sent	along	his	memo.

Writing	 the	memo	took	 time	and	effort,	but	 it	was	worth	 it.	 It	helped	him
stand	out	to	the	company	and	gave	him	a	chance	to	make	a	first	impression
on	 his	 own	 terms.	 When	 he	 walked	 into	 his	 interviews,	 he	 did	 so	 with
credibility	since	people	had	circulated	the	memo.	Eventually,	Swype	had	a
very	successful	exit,	being	acquired	by	Nuance	for	$102.5	million.

Referrals	 are	 important	 at	 all	 companies,	 but	 especially	 so	 at	 startups	 because
they	are	less	likely	to	want	to	take	a	risk.	Where	there	are	only	a	few	PMs,	each
one	makes	a	giant	impact	on	the	organization.	It	can	help	to	reach	out	to	people
you	know	at	the	company,	even	if	you	don’t	know	them	super	well.

In	addition	to	referrals	from	employees,	startups	also	look	for	referrals	from	their
investors,	 advisors,	 and	 board	members.	You	 can	 consider	 applying	 through	 a
venture	 capital	 firm	 or	 via	 a	 site	 like	 AngelList	 to	 get	 access	 to	 all	 of	 their
portfolio	companies.

Finally,	many	startups	recruit	their	first	PM	from	inside	the	company.

For	example,	Paul	was	in	technical	support	at	TechExcel	and	used	his	connection
with	 the	 customers	 to	make	helpful	 product	 suggestions.	The	CEO	 then	 asked
him	to	lead	features.

Similarly,	 Jesse	 was	 an	 engineer	 at	 Venmo	 who	 was	 interested	 in	 usability
testing.	He	had	shown	leadership	in	organizing	the	team	during	a	redesign,	and
the	founders	asked	him	to	become	their	first	PM.

What	they	do
Being	a	PM	at	a	startup	can	be	similar	to	being	a	PM	at	a	large	company.	You’ll

still	be	working	with	engineers	and	designers,	and	you’re	still	responsible	for	the
success	of	your	product.	PMs	at	startups	help	define	the	roadmap,	spec	features,
triage	bugs,	analyze	experiments,	and	shepherd	launches.

The	 big	 difference	 in	 being	 a	 PM	 at	 a	 startup	 comes	 from	 the	 scale.	 Since
startups	 don’t	 have	 large	 management	 structures,	 the	 PMs	 naturally	 become
important	leaders	for	the	company.	Additionally,	startups	have	fewer	resources,
so	 there’s	more	“white	 space”	 for	 the	PMs	 to	 fill	 in	 and	more	of	 a	need	 to	be
really	scrappy.

PMs	 at	 startups	 often	 have	 a	 lot	 of	 influence	 over	 the	 company	 culture,
processes,	and	 roadmap.	 Jesse,	 the	 first	PM	at	Venmo,	was	even	able	 to	 shape
the	vision	statement.

When	I	first	became	a	PM,	I	recognized	the	need	to	have	a	team	mission	to
help	everyone	stay	aligned.	I	organized	a	day	where	we	all	sat	together	and
wrote	down	ideas	to	come	up	with	the	one	sentence	vision	for	Venmo:	“To
connect	the	world	and	empower	people	through	payments.”

For	PMs	at	startups,	defining	the	role	is	an	important	part	of	the	job.	There’s	less
guidance	 and	mentorship,	 since	 you’re	 not	 coming	 into	 a	 team	of	 experienced
PMs.	Also,	many	roles	that	exist	at	a	big	company	might	not	exist	at	a	startup,	so
the	PM	might	 need	 to	 take	on	 tasks	 like	 customer	 support,	 user	 research,	 data
analysis,	or	sales	until	the	company	grows	larger.	At	a	startup,	it’s	unlikely	that
the	 CEO	will	 tell	 the	 PM	 to	 take	 on	 these	 roles;	 usually	 the	 PM	 notices	 that
there’s	a	gap	and	starts	doing	it	himself.

One	 thing	 that	can	be	difficult	as	a	company’s	 first	PM	is	 introducing	process.
Engineers	at	startups	love	shipping	code	quickly	and	are	very	wary	of	overhead,
so	 it’s	 important	 to	 be	 careful	 when	 adding	 process	 like	 Agile.	 PMs	 need	 to
make	sure	that	everyone	still	has	a	voice	and	understands	the	reasons	for	adding
timelines	and	milestones.	It’s	not	always	so	bad	though.	In	many	cases,	the	team
only	 brings	 in	 a	 PM	once	 it	 is	 clear	 that	more	 process	 is	 needed,	 so	 the	 team
might	already	be	on	board.

While	 startups	 have	 fewer	 resources	 within	 the	 company,	 they’re	 often	 more
willing	than	large	companies	to	go	outside	the	company	for	help.	PMs	at	startups
often	reach	out	to	PMs	at	other	startups	to	get	and	share	advice.	Many	startups
form	relationships	with	other	startups,	so	there’s	a	real	community.	For	example,
a	B2B	startup	might	find	its	early	customers	through	connections	made	by	their

investors	to	other	startups.

Another	 big	 difference	 is	 around	 career	 advancement.	At	 big	 companies,	 PMs
are	often	 thinking	about	getting	promoted	and	climbing	 the	career	 ladder.	At	a
startup,	 the	 focus	 is	 much	 more	 on	 making	 the	 whole	 company	 successful:
getting	revenue,	getting	to	profitability,	having	an	IPO,	or	getting	acquired.	This
means	that	PMs	need	to	take	a	more	holistic	view	of	the	company.	It’s	important
to	make	the	company,	not	just	your	team,	successful.

Asana
Asana	is	an	enterprise	startup	that	builds	modern	productivity	software.	Unlike
traditional	enterprise	companies,	Asana’s	business	model	is	bottom	up:	end	users
bring	 Asana	 into	 a	 team,	 not	 the	 IT	 department.	 This	 means	 PMs	 focus	 on
building	 software	 that	 people	 love	 to	 use.	 The	 product	 team	 has	 PMs	 with
backgrounds	at	Facebook,	Google,	and	Microsoft.

Jennifer,	 an	Asana	PM	and	 former	Microsoft	PM,	 talks	 about	what	 it’s	 like	 to
move	from	a	big	company	to	a	startup:

Because	 we’re	 a	 small	 company	 with	 a	 flat	 hierarchy,	 I	 feel	 like	 I	 got
promoted	 three	 times	 when	 I	 joined	 Asana.	 In	 addition	 to	 PMing	 meaty
areas	 of	 the	 product,	 I	 influence	 other	 aspects	 of	 the	 company,	 such	 as
product	strategy,	process,	and	culture.

For	 example,	 I	 get	 to	 influence	 the	 overall	 schedule	 and	 cadence	 of	 the
company,	 what	 the	 product’s	 design	 principles	 are,	 how	 much	 effort	 the
company	puts	 into	creating	new	features	vs.	polishing	existing	features	vs.
improving	internal	efficiencies.

And	because	 our	 team	 is	 small	 and	 values	 continuous	 personal	 growth,	 I
have	 the	 opportunity	 to	 work	 on	 very	 different	 areas	 of	 the	 product.
Sometimes	 I	work	 on	 features	 that	 require	 a	 lot	 of	 deep	UI	 thinking,	 and
sometimes	I	work	on	areas	that	require	more	data	analysis.

Foursquare
Foursquare	is	a	location-based	social	networking	service	that	helps	people	make
the	most	 of	where	 they	 are,	whether	 that’s	 searching	 for	 the	 perfect	 place	 for
dessert,	 learning	about	a	concert	 in	Central	Park	that’s	 trending,	or	discovering
that	a	friend	from	out-of-town	just	landed	at	the	airport.

The	PMs	at	Foursquare	come	predominantly	from	Google.	Noah,	a	Foursquare
PM,	explains	the	impact	this	has.

This	has	certainly	influenced	our	culture.	Rather	than	wholesale	import	of
Google’s	practices	 though,	we’ve	selectively	chosen	what	makes	sense	 for
our	size	company.	Over	time,	that	has	changed.

When	you’re	30	people,	individual	OKRs	[Objectives	and	Key	Results]	are
superfluous;	 everyone’s	 would	 just	 read	 ‘Do	 whatever	 I	 can	 to	 help	 the
company	survive	and	grow.’

Now	 that	 we’re	 150	 people,	 individual	 OKRs	 still	 seem	 like	 unneeded
overhead,	 but	we’ve	 started	 using	 team-level	OKRs	 to	 keep	 track	 of	 firm
metric	goals.

Compared	 to	 Google,	 we	 actually	 write	 more	 specs.	 I	 think	 it’s	 because
projects	move	so	much	faster	here.	It	means	we	need	to	quickly	and	early	on
work	 through	 the	 biggest	 and	 most	 contentious	 problems;	 we	 don’t	 have
time	 for	 those	 to	pop	up	 later	and	cause	delays.	Specs	aren’t	meant	 to	be
comprehensive	 guides	 for	 how	 to	 build	 every	 piece	 of	 a	 feature.	 Instead,
they’re	 meant	 to	 document	 the	 non-obvious	 decisions	 the	 team	makes	 so
people	can	reference	back	to	it	later.

Dropbox
Dropbox	helps	over	a	hundred	million	people	keep	their	important	files	safe	and
available	across	many	devices.	You	can	easily	upload	photos	from	your	phone,
share	 files,	 or	 collaborate	 on	 a	 project.	 The	 product	 team	 includes	 PMs	 from
Google,	 Facebook,	 Microsoft,	 and	 Zynga,	 and	 several	 were	 startup	 founders
prior	to	joining	Dropbox.

Matt,	a	PM	at	Dropbox,	talks	about	what	it’s	like	to	work	there:

Working	at	a	200	person	startup	is	pretty	different	from	a	larger	company.
As	 a	PM	at	Google,	 I	was	 very	 focused	 on	 building	 a	 great	 product	 and
making	 my	 team	 successful.	 But	 at	 Dropbox’s	 size,	 I	 get	 to	 have	 more
impact	on	shaping	the	company’s	culture,	how	we	build	products,	and	how
we	think	about	the	PM	role	itself.	I	get	to	work	closely	with	the	founders	on
defining	our	company	vision	and	priorities	and	building	out	a	great	team.

We	 look	 for	 PMs	 with	 a	 technical	 background,	 exceptional	 product

instincts,	and	an	eye	for	detail.	Arash,	our	founder,	will	notice	if	a	product
detail	 is	 even	 one	 pixel	 off,	 so	 we	 expect	 our	 PMs	 to	 really	 ‘sweat	 the
details.’

One	 of	 my	 favorite	 experiences	 was	 working	 to	 launch	 a	 new	 security
feature	 (two-step	 verification)	 one	 week	 after	 joining	 the	 company.	 We
assembled	 a	 great	 team	 and	 went	 from	 idea	 to	 designs	 to	 launch	 in	 five
weeks	 across	 all	 of	 our	 desktop	 and	 mobile	 apps,	 our	 website,	 and	 our
developer	 APIs.	 It	 was	 really	 gratifying	 to	 see	 how	 much	 a	 small	 team
could	do	really	quickly.

Uber
Uber	is	evolving	the	way	the	world	moves.	By	seamlessly	connecting	riders	 to
drivers	 through	 their	 apps,	 they	make	cities	more	 accessible,	opening	up	more
possibilities	 for	 riders	 and	 more	 business	 for	 drivers.	 The	 product	 team’s
experience	 runs	 the	 gamut	 of	 investment	 banking,	 management	 consulting,
startups,	and	working	at	larger	companies	such	as	Amazon	and	Google.

Mina,	an	Uber	PM,	talks	about	what	makes	PMing	at	Uber	great.

Being	an	Uber	PM	is	like	lifting	up	the	hood	of	a	luxury	car.	As	a	user,	you
just	 get	 to	 enjoy	 it	 and	 you	 don’t	 need	 to	 think	 about	 the	mechanics	 that
make	 it	work	 so	 smoothly.	But,	 as	 a	PM,	 you	 get	 to	 lift	 up	 the	 hood	 and
retool	the	complexity	to	make	it	work	even	better.

Users	can	focus	on	our	apps,	which	is	exactly	what	we	want	them	to	do.	In
contrast,	we	look	across	the	whole	system	from	what	it	takes	to	find	you	a
car	to	helping	our	drivers	build	their	businesses.	Because	we’re	so	tightly
connected	to	not	only	our	engineers	and	designers,	but	also	our	operational
teams,	we	enjoy	a	unique	role.

On	a	day-to-day	basis,	one	thing	that	stands	out	as	reflective	of	our	culture
is	our	global	perspective.	After	only	three	years,	we’re	in	over	40	cities	and
expanding	each	week	to	more	cities,	which	means	that	every	single	product
we	 build	 needs	 to	 work	 internationally.	 We’re	 also	 big	 proponents	 of
workcation	 -	 hanging	 out	 with	 your	 coworkers	 while	 building	 great
products	in	exotic	locations,	Uber-sponsored.	For	example,	last	New	Years,
we	had	teams	in	Melbourne,	Miami,	Stockholm	and	Bali	ringing	in	2013.

Airbnb
Airbnb	is	a	community	marketplace	for	people	to	list,	discover,	and	book	unique
accommodations	 around	 the	 world.	 Airbnb	 connects	 people	 to	 unique	 travel
experiences,	at	any	price	point,	in	more	than	33,000	cities	and	192	countries.

At	Airbnb,	product	managers	are	called	producers,	like	a	movie	producer.	As	a
producer	at	Airbnb	explained:

Think	about	a	movie.	As	a	producer	you	work	with	your	creative	team	and
the	actors	and	camera	and	light	to	hold	it	all	together.	At	the	end	of	the	day,
along	with	the	director,	you’re	responsible	for	the	movie.

The	 team	 of	 producers	 is	 very	 diverse	 -	 along	 with	 PMs	 from	 the	 big	 tech
companies,	there	are	also	people	who	came	from	small	startups	and	people	who
came	 from	 the	 hospitality	 industry.	 This	 diversity	 enables	 Airbnb	 to	 build	 a
unique	 culture.	 The	 culture	 is	 fundamentally	 design	 driven	 and	 puts	 a	 big
emphasis	on	customer	research,	called	“User	Insights.”

One	 thing	 that	 really	makes	Airbnb	unique	 is	 that	 it’s	a	 two-sided	marketplace
(guests	 and	 hosts),	 and	 a	 lot	 of	 the	 experience	 is	 offline.	 Producers	 at	Airbnb
think	about	the	offline	“frames”	(another	movie-industry	reference).

Thomas,	a	producer	at	Airbnb,	shared	an	example:

You	might	assume	that	Airbnb	has	no	impact	on	how	kind	and	professional
our	hosts	are	to	their	guests	since	this	is	part	of	the	travel	experience	that
happens	offline.	In	fact,	 there	is	a	lot	that	can	be	done	to	help	hosts	to	be
exceptional	 hosts	who	anticipate	 their	 guests’	 needs	which	 then	 results	 in
meaningful	 trips,	unique	experiences	and,	often	 times,	 lasting	connections
between	hosts	and	guests.

Getting	the	Right	Experience
Chapter	4

If	 you	 ask	 interviewers	 what	 they’re	 looking	 for	 in	 PM	 candidates,	 they’ll
usually	say	that	they	are	looking	for	smart	people	who	get	stuff	done.

This	desire	will	be	reflected	in	the	job	descriptions	for	product	management	job
openings.	The	requirements	list	will	be	more	detailed,	but	it	will	ultimately	boil
down	to	two	criteria:
	

Can	you	be	trusted	to	make	the	right	decisions?

Can	you	push	through	all	of	the	potential	roadblocks	to	deliver	a	great	product?

You	will	want	to	focus	on	these	criteria	when	you’re	thinking	about	what	kinds
of	experience	to	acquire.

For	example,	whenever	possible,	see	your	projects	through	to	the	end.	Focus	on
understanding	the	things	you	did	and	the	outcomes	of	your	actions.	Understand
not	only	if	your	outcome	was	successful,	but	by	what	metrics	it	was	successful—
or	not.	Consider	what	it	is	that	drove	the	success	or	lack	of	success.	It’s	okay	to
fail	sometimes,	but	you	need	to	know	why	you	failed.

New	Grads
Product	management	is	a	great	role	to	get	into	right	out	of	college.	Many	of	the
big	 companies	 have	 university	 recruiting	 programs,	 and	 they	 pride	 themselves
on	training	new	grads	to	become	top	notch	product	managers.	In	many	ways,	it’s
easier	 to	 get	 into	 product	 management	 as	 a	 new	 grad	 than	 as	 an	 experienced
candidate.

The	new	grad	product	management	programs	only	accept	a	small	percentage	of
the	many	applicants	they	get	each	year.	If	you	want	to	stand	out	from	the	crowd,
you	will	need	to	show	strong	technical	skills	combined	with	excellent	customer
focus	and	product	design	skills.	Generally,	it	won’t	be	enough	to	just	ace	all	of
your	engineering	classes,	since	that	might	still	land	your	resume	in	the	Software
Engineer	pile.

If	you’re	a	current	student	and	want	to	improve	your	chances	of	getting	hired	as
a	product	manager,	consider	the	following:
	

Major	in	computer	science,	or	at	least	get	a	minor	in	computer	science	or	a	closely	related	field.
College	recruiters	often	only	consider	candidates	with	a	very	technical	background.

Pick	up	a	double	major,	especially	 in	a	 field	 like	economics	or	business.	A	computer	 science	 /
economics	double	major	is	a	very	common	background	for	product	managers	because	it	shows	an
interest	in	both	the	technical	and	business	side	of	software.	Econ	is	also	a	great	field	for	picking
up	 analytical	 skills	 and	 proficiency	 with	 statistics.	 Other	 fields	 like	 psychology,	 philosophy,
cognitive	science,	human-computer	interaction	(HCI),	or	sociology	can	also	be	very	relevant	for
product	management.

Take	group	project	courses.	Group	project	courses	are	a	great	way	to	pick	up	leadership	skills	and
start	 to	 gain	 relevant	 experience.	 Pay	 attention	 to	 the	 group	dynamics	 and	 the	 challenges	 your
group	overcomes.	You	can	use	 those	experiences	as	anecdotes	during	your	 interview	to	answer
behavioral	questions.

Take	on	a	leadership	role.	This	can	be	on	anything	from	a	sports	team	to	a	club	to	class	president.
As	a	product	manager	you’ll	need	very	strong	leadership	skills	to	lead	a	team	of	engineers.	It’s
especially	 great	 if	 you	 can	 do	 something	 from	 scratch,	 like	 launch	 a	 new	 club,	 a	 school-wide
contest,	or	an	extracurricular	activity.	This	shows	initiative.

Should	you	intern	as	a	developer	or	a	PM?
You	don’t	have	to	be	an	engineer	before	you	can	apply	to	be	a	product	manager.	But	if	you
love	coding	and	want	to	buff	up	your	technical	credentials,	an	engineering	internship	gives
you	a	great	chance	to	see	the	PM-Dev	relationship	from	the	other	side.	Many	engineers	love
working	with	PMs	who	used	to	be	engineers.

Start	a	side	project.	One	of	 the	best	ways	to	rise	above	the	crowd	is	 to	have	a	side	project	 like	a
mobile	app.	This	gives	you	a	chance	to	show	your	customer	focus	and	product	design	skills.	If
you	don’t	have	the	technical	skills	to	do	this	yourself,	you	can	learn	them,	hire	some	developers
to	do	the	building,	or	partner	with	your	technical	friends.

Intern	as	a	product	manager	or	software	engineer.	There’s	nothing	better	than	learning	on	the	job,
and	an	internship	gives	you	that	chance.

The	key	theme	here	is	to	show	something	beyond	coding	skills.	Coding	skills	are
great—often	 required,	 in	 fact—but	 they’re	 not	 sufficient.	 Find	 a	way	 to	 show
leadership,	business	skills,	and	initiative.

Making	the	Most	of	Career	Fairs
If	you	don’t	look	like	a	traditional	PM	candidate,	career	fairs	can	be	a	great	way
for	you	to	get	your	foot	in	the	door,	especially	at	smaller	companies.	When	you
chat	with	 the	people	 at	 a	 career	 fair	booth	and	hand	over	your	 resume,	 they’ll
make	some	notes	based	on	the	impression	you	made.	Those	notes	can	mean	the
difference	between	getting	an	interview	or	having	your	resume	ignored.

Here	are	some	tips	to	make	the	most	of	your	time	at	career	fairs:
	

Research	 which	 companies	 will	 be	 at	 the	 career	 fair	 and	 decide	 which	 ones	 you	 are	 the	 most
interested	in.	Check	if	they	have	PM	roles	available.

Pick	out	your	best	talking	points.	Think	about	what	will	make	you	stand	out	and	look	like	a	great	PM
candidate.	 Maybe	 it’s	 a	 challenging	 class	 project	 you	 took	 on,	 or	 maybe	 you	 had	 a	 great
experience	 as	 a	 teaching	 assistant.	Anything	 you’ve	 done	 to	 show	 initiative	 (Did	 you	 built	 an
iPhone	 app	 for	 fun?	Did	 you	 start	 a	 new	 competition	 in	 your	 city?)	would	 be	 a	 great	 thing	 to
discuss.

Practice	a	short	intro	that	includes	your	talking	points.	Imagine	walking	up	to	the	booth,	saying	hello,
and	 introducing	yourself	 in	 a	way	 that	will	 let	you	 talk	 about	your	 accomplishments	 in	 a	non-
awkward	way.

Think	of	good	questions	 to	ask	 the	company	employees.	You	might	not	know	ahead	of	 time	if	 the
company	is	sending	PMs,	engineers,	or	just	recruiters,	so	make	sure	you	have	some	appropriate
questions	for	each.

At	 the	career	 fair,	pay	attention	 to	how	crowded	 the	booths	are.	This	can	be	a	great	 time	 to	get	 to
know	 a	 smaller	 company	 and	 consider	 places	 you	 hadn’t	 thought	 of	 before.	 If	 the	 booth	 isn’t
crowded,	they’ll	probably	be	willing	to	spend	longer	talking	to	you,	which	means	more	time	for
you	to	convince	them	you’re	a	good	fit.

When	you	go	up	to	a	booth,	let	them	know	that	you’re	interested	in	the	PM	role,	and	ask	who	is	the
best	person	to	talk	to.	They	might	be	able	to	direct	you	to	a	PM,	or	at	 least	 to	someone	who	is
comfortable	evaluating	PMs.

Have	a	friendly	conversation	with	the	employee.	Remember	that	at	a	career	fair	they’re	trying	to	sell
you	on	 the	 company,	 so	 it’s	 entirely	 appropriate	 to	 ask	 questions.	Tell	 them	about	why	you’re

interested	in	being	a	PM	and	why	you	think	you’d	be	a	good	fit.	Show	interest	in	their	company.

Don’t	 just	 hand	 over	 your	 resume	without	 talking	 to	 people	 at	 the	 booth	 first.	 If	 you	 do,	 you’re
missing	out	on	the	unique	benefits	of	being	able	to	talk	to	company	employees	firsthand.

While	 you	 do	want	 to	 remain	 professional,	 don’t	 be	 afraid	 to	 do	 something	 a
little	different.	 It’s	 good	 to	have	 some	personality	 and	passion!	 If	 you’ve	built
something	particularly	cool,	you	could	show	the	booth	staff	some	pictures	or	a
very	short	demo.

Do	you	need	an	MBA?
An	MBA	 isn’t	 a	 requirement	 for	 product	management,	 and	 at	 some	 startups	 it
might	even	count	against	you.	On	the	other	hand,	teams	with	more	of	a	business
focus	 consider	 an	 MBA	 a	 real	 asset,	 and	 some	 companies,	 such	 as	 Amazon,
explicitly	focus	on	hiring	MBAs.

Arjun,	who	got	 an	MBA	after	 starting	 as	 a	PM	at	Microsoft,	 decided	 to	go	 to
business	 school	 when	 he	 noticed	 that	 well-designed	 products	 didn’t	 always
become	market	 winners.	 “I	 saw	 that	 good	 design	 isn’t	 enough,”	 Arjun	 noted.
“There’s	 something	else,	 and	 I	wanted	 to	 learn	what	 that	 something	else	 is.	 In
business	 school	 I	 realized	 you	 could	 ask	 business	 questions	 and	 answer	 them
really	easily,	on	the	back	of	a	napkin.”

This	analytical	approach	to	products	changed	how	Arjun	thought	about	features
and	 prioritization.	 Instead	 of	 guessing	 what	 users	 would	 want,	 he	 started
thinking	about	which	metrics	he	wanted	to	drive.

Here	are	some	tips	on	how	to	get	the	most	out	of	your	time	in	business	school	if
you’re	interested	in	product	management:
	

Take	the	chance	to	start	something.	Gain	experience	by	launching	projects,	joining	clubs,	or	building
something.	This	will	help	you	avoid	the	biggest	MBA	pitfall:	being	someone	who	only	wants	to
tell	people	what	to	do,	and	doesn’t	know	how	to	actually	do	things.

Take	project-based	classes	where	you	can	work	on	your	ideas.	This	lets	you	make	double	use	of	class
time,	and	you	have	the	added	benefit:	a	team	of	MBAs	helping	you	out.

Practice	designing	products	by	 sharing	your	mockups	with	classmates	and	 iterating	based	on	 their
feedback.

Choose	relevant	classes	like	entrepreneurship,	marketing,	or	consumer	behavior.

Chris,	who	 got	 an	MBA	 after	 being	 an	 engineering	 program	manager	 (EPM),
found	 a	 lot	 of	 benefits	 from	 business	 school.	 “An	MBA	 gets	 you	 experience,
connections,	 ideas,	 resources,	 seed	 funding,	and	partnerships.	Business	schools
provide	a	lot	of	resources,”	he	said.

Does	your	online	persona	matter?
It’s	 pretty	 common	 for	 people	 to	 have	 a	 big	 online	 presence	 these	 days.
From	Twitter	to	Quora	to	personal	websites,	 there	are	a	lot	of	ways	to	get
your	 ideas	 out	 there.	 So	 should	 you	 spend	 a	 lot	 of	 effort	 building	 your
website	or	tweeting?

There	are	two	main	places	where	your	online	persona	will	come	into	play:
recruiting	 and	 startups.	 Recruiters	 often	 search	 online	 to	 find	 qualified
candidates	and	may	reach	out	to	you	to	apply	based	on	your	online	content.
If	you’re	hoping	to	get	noticed,	being	active	online	can	pay	off.

LinkedIn	 is	one	of	 the	most	valuable	sites	 to	 focus	on	 for	 recruiting.	One
way	to	optimize	your	profile	is	to	look	at	PMs	with	jobs	you’re	interested	in
and	see	what	their	profiles	look	like	and	how	they	stood	out.	You	can	also
pay	 for	 a	 premium	 account	 to	 see	 how	 people	 are	 currently	 finding	 your
profile	and	optimize	around	that.

If	 you’re	 applying	 to	 startups,	 you	 might	 also	 find	 that	 some	 of	 your
interviewers	will	look	you	up	and	notice	your	online	content.

However,	 at	 larger	 companies	 it	will	 be	much	 rarer	 that	 interviewers	will
research	you	in	advance	and	discover	your	website	or	posts.	If	you	do	have
a	 great	 website,	 you	 can	 include	 it	 on	 your	 resume	 or	 try	 to	 bring	 it	 up
during	your	interviews.	But	otherwise,	don’t	worry	about	it!

Current	PMs
If	 you’re	 a	 current	 product	 manager,	 moving	 to	 the	 same	 role	 at	 another
company	 is	 pretty	 straightforward.	 If	 you’ve	 already	 worked	 as	 a	 product
manager	at	a	well-known	software	company,	 that	experience	 is	usually	enough
to	get	you	an	interview	at	another.	There’s	still	room	to	build	up	your	experience
though:
	

Launch!	The	most	important	way	a	product	manager	is	judged	is	by	the	products	she’s	launched.	If
your	team	is	close	to	launch	but	not	quite	there,	you	might	want	to	wait	until	the	product	is	fully
launched	to	start	applying.	Likewise,	if	you’re	on	a	team	with	a	very	long	ship	cycle,	you	might
consider	switching	to	a	team	with	more	frequent	launches	so	you	can	get	the	experience	of	seeing

a	product	through	the	entire	cycle.

File	for	patents.	While	software	patents	are	a	very	controversial	topic,	many	companies	still	see	them
as	a	necessary	evil.	If	you	work	for	a	company	that	files	patents,	make	sure	you	file	patents	for
your	innovations.	A	patent	application	is	a	great	way	to	make	your	resume	stand	out.

Take	 on	 responsibilities	 to	 round	 out	 your	 skills.	 If	 you’ve	 always	 been	 really	 strong	 in	 product
design,	see	if	you	can	learn	data	analysis.	If	you’ve	been	working	on	deep	technical	problems,	see
if	you	can	spend	some	time	doing	user	research.

If	you’re	trying	to	move	from	a	less	prestigious	company	to	a	more	prestigious
one,	these	tips	can	be	especially	useful.

Why	Technical	Experience	Matters
Many	 product	 management	 roles	 list	 a	 requirement	 for	 a	 degree	 in	 computer
science.	At	first	this	might	seem	baffling:	coding	isn’t	a	regular	part	of	a	product
manager’s	 job,	 so	 why	 don’t	 companies	 loosen	 up	 that	 requirement	 to	 find
someone	who	truly	excels	at	the	core	product	management	skills?

Here’s	 the	 simple	 answer:	 many	 people	 without	 a	 background	 in	 computer
science	struggle	to	form	a	strong	working	relationship	with	engineers.

All	of	those	excellent	product	management	skills	will	go	to	waste	if	the	product
manager	 alienates	 his	 engineers	 and	 can’t	 earn	 their	 respect.	 Product
management	is	a	job	where	you	have	to	lead	without	authority.	The	only	way	to
get	great	work	done	is	to	bring	the	team	onboard	with	your	vision.

That	 said,	 a	 computer	 science	 degree	 isn’t	 a	 magic	 bullet	 for	 forming	 great
relationships	 with	 engineers,	 and	 it’s	 possible	 to	 be	 a	 great	 product	 manager
without	a	technical	background.	Companies	tend	to	use	technical	experience	as	a
proxy	for	the	real	qualities	they’re	looking	for:
	

Able	 to	 form	a	relationship	of	mutual	respect	with	engineers.	Companies	 almost	 always	hire	 a
product	manager	 to	 join	 a	 team	 of	 engineers	who	 already	work	 for	 the	 company.	 They’re	 not
willing	to	hire	someone	who	won’t	get	along	with	the	team	or	who	can’t	earn	the	respect	of	the
team.

Good	intuition	on	how	long	engineering	work	should	take.	A	good	product	manager	understands
the	technical	framework	he’s	working	with	and	can	help	the	team	prioritize	and	make	tradeoffs
between	the	time	spent	on	engineering	and	the	value	of	that	work	to	the	customer.

Scrappy	 and	 Self-Sufficient.	 Great	 product	 managers	 are	 action-oriented	 and	 passionate	 about
delivering	results.	They	will	try	to	take	care	of	what	they	can	themselves,	whether	that’s	gathering
data	or	fixing	typos	in	the	product.	This	frees	up	developers	from	the	more	tedious	tasks	so	they’ll
be	able	to	do	more	valuable	work.

If	 you	 don’t	 have	 this	 technical	 background	 (or	 it	 doesn’t	 come	 out	 in	 your
resume),	try	to	find	a	way	to	develop	and	demonstrate	these	skills.

Transitioning	from	Engineer	to	Product	Manager
With	all	of	this	emphasis	on	technical	experience,	engineers	are	in	a	great	place
to	break	into	product	management.	As	an	engineer,	you	really	understand	what	it
takes	 to	 build	 a	 product	 and	 the	 impact	 that	 various	 tradeoffs	 can	make.	 You
might	also	have	worked	with	excellent	PMs	you	want	to	emulate	or	less-skilled
PMs	whose	mistakes	you	want	to	avoid.

Customer	Focus
Customer	 Focus	 is	 the	 most	 important	 thing	 to	 develop	 when	 moving	 from
engineering	to	product	management.	Engineers	and	developers	can	usually	pick
up	most	of	the	other	important	skills	on	the	job,	but	a	customer	focus	is	one	of
the	defining	characteristics	of	good	PMs.	This	means	not	 just	 thinking	of	cool
ideas,	but	relentlessly	thinking	about	the	target	audience,	their	hopes	and	dreams,
their	 needs,	 and	 how	 they’re	 different	 from	 you	 and	 the	 other	 people	 at	 your
company.

One	way	to	build	customer	focus	is	to	talk	to	customers	of	your	current	product.
Ask	 the	PM	or	Sales	 team	 if	 they	will	bring	you	along	on	 their	next	customer
visit;	they	usually	love	to	bring	an	engineer	along.	When	they	ask	for	features	or
tell	 you	what	 they	 need,	 see	 if	 you	 can	 dig	 a	 few	 levels	 deeper	 to	 get	 at	 the
underlying	 motivation.	 Basically,	 you’re	 doing	 a	 root	 cause	 analysis	 on	 the
customer’s	request.

If	you	can’t	directly	visit	a	customer,	you	can	sometimes	read,	or	even	volunteer
to	answer,	customer	support	tickets.	Working	on	the	customers’	side	and	solving
their	problems	can	help	you	build	up	customer	empathy.

Writing	story-like	user	scenarios	for	the	features	you’re	building	is	another	way
to	develop	 customer	 focus.	For	 these	 scenarios,	 put	 yourself	 in	 the	 customer’s
shoes	and	imagine	how	the	feature	fits	 into	 the	rest	of	 their	 life.	 It	might	seem
silly,	but	when	you	include	details	about	the	customer’s	mindset,	you	can	build
products	that	fit	into	their	lives	better.	For	example,	did	Sally	really	turn	on	her
computer	today	hoping	to	update	her	Flash	player?	Probably	not,	so	maybe	the
update	should	happen	quietly	in	the	background.

If	 you’re	 a	 backend	 engineer,	 you	 probably	 don’t	 interact	 with	 people	 from
different	functional	groups	as	much.	See	if	you	can	treat	the	engineers	who	build

on	 top	of	your	work	 like	your	customers.	Do	user	studies	with	 them	and	 think
about	their	use	cases.

As	you’re	 preparing	 for	 the	product	manager	 role,	 practice	 describing	 features
from	 the	 customer’s	 point	 of	 view	 by	 calling	 out	 the	 user-facing	 benefits.	 It’s
important	to	talk	more	like	a	PM	than	an	engineer	if	you	want	to	be	considered
seriously	for	the	role.

Think	Big
Visionary	or	strategic	thinking	is	another	area	to	focus	on	when	transitioning	to
product	management.	As	an	engineer,	you’re	probably	very	focused	on	what	is
possible	to	build.	For	most	of	your	career,	you’ve	needed	to	lower	other	people’s
unrealistic	expectations.	As	a	product	manager,	you	need	to	let	go	of	that	instinct
and	 allow	 yourself	 to	 envision	 a	 world	 where	 you’ve	 made	 the	 impossible
happen.

Teams	need	product	managers	who	can	lead	them	into	the	future,	building	things
that	have	never	been	built	before.	At	some	point	in	the	development	life	cycle,
you’ll	have	a	chance	to	scale	back,	but	you	need	to	start	big	if	you	want	to	build
a	product	that	will	have	an	impact.

It	might	 sound	 crazy,	 but	 for	 any	 product	 or	 feature	 you’re	working	 on,	 think
about	how	it	could	change	the	world.	If	this	is	hard	for	you,	here	are	some	tips:
	

See	if	you	can	tie	the	benefits	to	fundamental	human	needs	like	safety,	friendship,	or	self-esteem.

Start	your	brainstorming	with	the	phrase	“If	I	had	a	magic	wand...”

Write	down	your	practical	objections,	then	keep	going.

Find	a	teammate	to	play	the	practical	pessimist	role	in	your	brainstorming.

Write	yourself	a	reminder	to	always	think	big.

Start	your	feature	planning	by	writing	the	press	release.

Allow	yourself	to	dream.

Embrace	the	persuasive	elements	of	communication

Many	 engineers	 are	 comfortable	 in	 the	 world	 of	 analytical	 thinking.	 As	 an
engineer,	 it’s	 better	 to	 prove	 things	 through	 data	 than	 charisma.	As	 a	 product
manager,	you	need	to	master	both.

We’d	love	to	think	that	all	of	our	coworkers	are	perfectly	logical	creatures,	but	to
accomplish	things	in	the	real	world,	you	often	need	to	rally	the	troops	and	build
up	 some	 excitement.	A	 spreadsheet	with	 compelling	metrics	may	 not	 open	 as
many	doors	as	a	 statement	 like	“I’ve	 looked	at	all	of	 the	numbers	and	 I	 really
believe	this	is	the	bet	we	need	to	make.”

Credibility	 is	 the	 currency	 of	 the	 PM	 role.	 Sure,	 each	 executive	 and	 engineer
could	look	at	your	spreadsheet	and	form	the	same	conclusions,	but	they	brought
a	 PM	 on	 the	 team	 so	 that	 they	 wouldn’t	 have	 to.	 They	 want	 you	 to	 do	 the
research	 and	 propose	 a	 solution.	 It’s	 your	 job	 to	 cut	 through	 the	 ambiguity	 to
help	the	team	get	moving.

The	more	certain	you	are	of	 the	 right	outcome,	 the	more	persuasively	you	can
speak	and	the	more	credibility	you’re	putting	on	the	table.	If	you	end	up	being
right,	 you	 gain	 credibility	 and	 can	 convince	 the	 team	 of	 bigger	 things	 in	 the
future.	If	you’re	wrong,	they’ll	be	less	likely	to	trust	you	next	time.

This	isn’t	to	say	that	you	should	swing	all	the	way	to	the	side	of	charisma.	Data
is	 often	 the	 fastest	 way	 to	 persuade	 an	 engineer,	 and	 it	 can	 be	 a	 much	 more
effective	approach	before	you’ve	built	up	your	credibility.	Just	don’t	forget	that
you	have	multiple	tools	and	you	should	use	them	all	 to	be	an	effective	product
manager.

Be	 prepared	 for	 some	 unexpected	ways	 that	 the	 PM
role	is	different	than	Engineering
When	you	think	about	becoming	a	product	manager,	there	are	some	changes	that
you’re	expecting:	you	won’t	be	be	coding	anymore,	you’ll	be	responsible	for	a
lot	of	decisions,	you’ll	spend	more	time	in	meetings.	There	are	also	some	parts
of	being	a	PM	that	are	less	visible.

Understanding	 these	 differences	 can	 mean	 a	 smoother	 transition.	 Before	 you
make	the	switch,	make	sure	you	have	considered	the	downsides	of	being	a	PM.
You	don’t	want	 to	get	 a	 job	 as	 a	 product	manager	only	 to	 learn	you	preferred
being	an	engineer!

The	work	is	less	tangible
In	engineering,	you	get	the	satisfaction	of	writing	code	and	seeing	it	work.	As	a
PM,	 most	 of	 your	 work	 doesn’t	 have	 such	 concrete	 output.	 Stephen,	 who
switched	from	a	developer	to	PM,	shared	that	“when	you’re	a	dev	you	have	all
these	daily	successes:	my	code	works,	my	build	passed.	As	a	PM,	you	have	to
remember	to	look	for	it:	I	convinced	this	person,	I	got	the	team	onboard,	and	so
on.”

You	become	a	focus	point	for	criticism
Ideas	can	come	from	anyone	on	your	 team.	As	 the	PM,	you’re	 responsible	 for
crystallizing	those	ideas	into	specifics.	While	everyone	might	have	liked	the	idea
in	 the	 abstract,	 once	 it’s	 solid	you’ll	 start	 to	hear	 a	 lot	 of	pushback,	no	matter
how	 good	 the	 design	 is.	 As	 a	 PM,	 you	 need	 to	 be	 able	 to	 take	 that	 criticism
constructively	and	not	personally,	and	turn	it	around	to	make	a	better	product.

You	don’t	have	time	to	do	it	all
Engineers	often	get	to	set	their	own	time	estimates	and	are	given	time	to	go	deep
on	a	feature.	An	engineer	might	spend	a	whole	week	working	on	one	part	of	the
code.	As	a	PM,	you	can’t	always	spend	the	time	you	want	on	all	of	your	work,
so	you	need	to	prioritize.	This	means	that	some	of	the	time	you’ll	have	to	hand
over	work	that’s	30%	of	what	you	wanted	to	do	and	move	on.

Look	for	openings	on	your	team
One	common	way	for	engineers	 to	move	into	product	management	 is	 to	find	a
role	 on	 their	 current	 team.	 It	makes	 sense;	 your	 current	 team	 already	 respects
you	and	has	seen	what	you	can	do,	and	you	have	expertise	in	the	area.

Daniel,	who	moved	from	engineering	to	product	management	at	Google,	found	a
PM	opening	on	his	 team.	“My	 team	had	an	open	PM	role	 that	was	very	data-
oriented,	and	it	wasn’t	clear	to	anyone	how	to	fill	it,”	he	told	us.	“I	knew	how	to
work	with	data,	so	I	came	up	as	an	option.	It	helped	that	I	had	people	skills	and
pre-existing	relationships	and	that	I	had	built	up	credibility.”

Here	are	some	tips	for	moving	into	a	PM	role	on	your	current	team:

It’s	important	to	let	your	interests	be	known.
Find	out	who	would	be	the	hiring	manager	for	the	next	PM	and	talk	to	her.	Your

team	might	not	currently	have	room	for	a	PM,	but	you	want	to	be	high	on	their
lists	 when	 the	 position	 opens	 up.	 This	 also	 gives	 you	 an	 opportunity	 to	 learn
what	areas	she	thinks	you	should	focus	on	improving.

Re-read	your	prior	performance	reviews	for	any	potential
PM	issues.
Have	 people	 commented	 about	 your	 being	 stubborn?	 About	 the	 team	 never
seeming	to	know	what	you’re	working	on	until	it’s	complete	(which	could	signal
communication	problems)?	About	wanting	 to	 see	you	 take	on	more	 leadership
on	 your	 features?	 Take	 steps	 to	 address	 these	 concerns	 immediately	 and	 to
leverage	what	PM-related	strengths	are	mentioned.

Start	taking	on	some	PM	work,	even	without	the	title.
Maybe	 there’s	 a	 small	 feature	 that	 needs	 to	 be	 spec-ed,	 or	 some	 product
decisions	you	can	help	make.	If	your	team	has	PMs,	you	can	offer	to	help	them
out.	 If	 your	 team	doesn’t	 have	 any	PMs,	 look	 around	 and	 see	what	work	 you
think	would	be	useful.

Take	on	other	types	of	leadership	and	coordination	work.
Stephen,	who	moved	from	developer	to	PM	on	his	team	at	Microsoft,	shared	this
story:	“I	was	the	tech	lead	on	a	team	with	two	other	devs	and	ran	a	cross-team
collaboration	project	for	my	team.	We	had	a	messy	dependency	on	another	team
that	was	a	big	risk,	so	I	took	on	project	management	for	that.	I	worked	with	the
partner	team,	and	got	the	dependency	straightened	out.	That	established	for	my
team	that	I	could	do	project	management	and	people	thought	of	me	as	a	leader.
Then	when	 I	 talked	 to	 the	 PM	 lead	 about	moving	 onto	 her	 team	 it	 felt	 like	 a
natural	fit.”

Think	 about	 how	 to	 clearly	 mark	 the	 change	 from
engineering	to	product	management.
It	 will	 be	 hard	 to	 be	 successful	 as	 a	 PM	 if	 you’re	 still	 handling	 a	 lot	 of
engineering	responsibilities;	you	need	to	pick	up	some	escape	velocity.	Consider
taking	time	off	between	the	role	switch	or	having	some	kind	of	hand	off	or	party
to	mark	the	transition.	Then	you	can	dive	into	your	new	PM	role	fully.

Find	a	specialized	PM	role	in	your	area	of	expertise

As	an	engineer,	 you’ve	probably	picked	up	 some	domain	expertise	 around	 the
product	 you’re	 working	 on.	 Especially	 if	 the	 industry	 has	 lots	 of	 specialized
knowledge,	 you	 can	 use	 your	 experience	 to	 boost	 you	 into	 a	 PM	 role	 in	 the
industry.

Perhaps	 you’ve	 been	 working	 on	 security	 and	 encryption	 products.	 That’s	 a
deeply	 technical	 area	 where	 your	 experience	 as	 a	 developer	 will	 be	 a	 natural
value-add.

One	area	where	you	might	have	a	natural	advantage	is	on	developer	product	or
platform	products.	Since	you’ve	worked	as	a	developer,	you	might	have	insight
into	how	to	build	a	great	product	for	other	developers.

When	you’re	going	this	route,	you	want	to	really	highlight	how	your	skills	and
experience	 can	 be	 an	 asset	 to	 the	 team.	 Don’t	 be	 shy	 about	 sharing	 specific
anecdotes	and	insights	about	the	industry.

Go	to	Business	School
An	 MBA	 can	 help	 you	 get	 a	 fresh	 start	 and	 round	 out	 your	 engineering
background	 with	 a	 business	 education.	 Additionally,	 you’ll	 have	 a	 chance	 to
network	with	up-and-coming	business	leaders,	work	on	projects	from	end	to	end,
potentially	 launch	 a	 startup	 (or	 just	 explore	 startup	 ideas),	 become	 eligible	 for
MBA	internships,	and	be	connected	with	PM	recruiters	at	the	top	companies.	A
developer-turned-MBA-student,	 particularly	 from	a	 top	MBA	program,	 is	 very
well	positioned	for	PM	opportunities.

However,	 an	MBA	will	 also	 cost	you	 lots	 in	 tuition	money,	 two	years	of	your
life,	and	even	more	in	lost	salary	since	you’ll	need	to	quit	your	job	for	a	full-time
MBA	 program.	 This	 could	 be	 easily	 over	 $250,000.	Given	 that	 investment	 of
time	and	money,	an	MBA	probably	isn’t	worth	it	if	you’re	solely	doing	it	to	get	a
PM	role.	There	are	quicker	and	cheaper	ways	to	make	this	transition.

Nevertheless,	if	you’ve	been	pigeonholed	into	the	engineering	role,	or	you	have
other	 reasons	 for	 seeking	 an	 MBA	 beyond	 simply	 wanting	 to	 be	 a	 PM,	 this
degree	can	be	valuable.

When	 going	 the	 MBA	 route,	 pay	 attention	 to	 how	 business-	 or	 marketing-
focused	you	want	 to	 be.	While	 all	 of	 the	big	 tech	 companies	 hire	 people	with
MBAs	into	product	management,	they	vary	on	how	close	those	PM	roles	are	to

the	engineers.	For	example,	Microsoft’s	product	manager	role	lives	firmly	under
marketing	(Microsoft’s	program	manager	role	is	more	equivalent	to	the	product
manager	role	at	other	companies.)	Ask	your	recruiter	questions	to	make	sure	you
understand	the	role.

Transitioning	from	Designer	to	Product	Manager
Designers	 have	 a	 great	 background	 to	move	 into	 product	management.	 If	 you
feel	 like	you	don’t	have	the	level	of	product	 influence	you	want,	or	 if	you	feel
like	your	analytical	 skills	are	being	underutilized,	 then	you	might	do	well	as	a
PM.

Designers	 already	 are	 familiar	 with	 focusing	 on	 the	 customer	 and	 designing
great	products.	Some	companies	have	PMs	do	a	lot	of	the	interaction	design,	so
those	skills	will	still	get	a	lot	of	use.

Practice	Prioritization
One	 of	 the	 biggest	 changes	 in	moving	 from	design	 to	 product	management	 is
becoming	 responsible	 for	 prioritization.	 As	 a	 PM,	 you’ll	 be	 responsible	 for
shipping	 the	 product,	 which	 means	 avoiding	 feature	 creep	 and	 scoping	 the
implementation	as	you	get	more	information	from	engineering	on	the	costs.

If	you’ve	been	relying	on	your	PM	to	tell	you	when	to	rein	it	in,	now’s	the	time
to	 start	 exercising	 those	 skills	 yourself.	 Sometimes	 you	 need	 to	 do	 things	 the
quick	and	dirty	way,	and	sometimes	you	need	 to	cut	a	feature	 that	would	have
made	 the	 product	 a	 lot	 more	 usable.	 As	 a	 designer,	 you	 can	 practice	 by
prioritizing	the	pieces	of	your	designs	and	discussing	them	with	your	PM.	See	if
you’d	 make	 the	 same	 calls,	 and	 if	 not,	 try	 to	 understand	 what	 underlies	 the
differences.	 Pay	 attention	 to	 what	 gets	 de-prioritized,	 either	 explicitly	 or
implicitly,	because	the	team	runs	out	of	time.

A	great	way	 to	 hone	your	 prioritization	 sense	 is	 to	 follow	up	on	 your	 designs
after	they’ve	launched.	See	if	you	can	talk	to	customers	or	read	support	tickets	to
learn	 if	 your	 prioritization	was	 right.	Are	 people	 complaining	 about	 a	missing
feature	 you	wanted	 to	 cut?	Or	 are	 they	 raving	 about	 something	 you	 fought	 to
keep	in?	Most	people	discover	that	they	can	cut	a	lot	more	than	they	thought.

Sharpen	Your	Analytical	Skills
Analytical	skills	come	 into	product	management	 in	 two	major	ways:	analyzing
what	your	team	should	be	doing	and	analyzing	how	to	persuade	people	to	do	that
thing.	 As	 a	 PM,	 you	 need	 to	 become	 comfortable	 with	 finding	 data	 that
convinces	people.	That	data	is	sometimes	from	product	metrics,	sometimes	from

user	research,	and	sometimes	from	competitive	analysis.

See	 if	 you	 can	 find	 ways	 to	 demonstrate	 analytical	 skills	 as	 a	 designer.	 For
example,	 maybe	 you	 can	 run	 a	 survey	 to	 get	 data	 that	 will	 help	 influence	 a
design.	 Or	 maybe	 you	 can	 learn	 SQL	 and	 start	 pulling	 usage	 metrics.	 These
skills	will	help	you	make	the	jump	to	PM.

Look	for	Leadership	Opportunities
At	some	companies,	designers	are	naturally	in	a	leadership	role,	while	at	others
you’ll	need	to	look	for	places	where	you	can	take	on	more	leadership.	Can	you
become	 involved	 in	 roadmap	 discussions?	 Are	 there	 team	 meetings	 that	 you
could	offer	to	run?	Maybe	you	can	identify	a	project	the	team	should	be	working
on,	pitch	it,	and	rally	people	to	work	on	it.

Or	perhaps	your	team’s	PM	is	a	bit	swamped	right	now.	Can	you	take	some	of
the	 load	off	her	plate?	You	might	be	able	 to	 spec	 something	out	 for	her	or	 try
your	hand	at	analyzing	some	data.	In	many	cases,	a	PM	would	be	happy	to	help
show	you	the	ropes.

Sometimes	it	feels	awkward	to	take	leadership	roles	when	no	one	has	given	you
permission.	 In	 those	 cases,	 you	 might	 need	 to	 “fake	 it	 until	 you	 make	 it.”
Remember	 that	 scrappiness	 is	 highly	 valued	 in	 PMs.	 Being	 scrappy	 is	 about
being	 resourceful	 and	 finding	ways	 to	 succeed	when	 the	 traditional	 processes
aren’t	going	to	work.	For	example,	if	you	find	that	engineers	are	reluctant	to	fix
UI	bugs,	you	might	come	up	with	a	contest	that	motivates	them.	That’s	the	kind
of	story	that	can	really	make	a	good	impression.

Transitioning	from	Customer	Support
Paul,	 currently	 a	 senior	 product	 manager,	 used	 his	 understanding	 of
customer	pain	points	to	move	from	tech	support	to	product	management.

When	customers	wrote	in	saying	something	was	broken,	he	would	always
ask	them	what	they	were	trying	to	do	in	order	to	understand	the	underlying
customer	 need.	 Then,	 when	 he	 filed	 bug	 reports,	 he	 included	 detailed
descriptions	 of	 the	 problems,	 suggestions	 for	 potential	 ways	 to	 solve	 the
problems,	and	ideas	for	new	features	that	would	help.	The	CEO	noticed	and
asked	him	to	become	the	company’s	first	product	manager.

Paul	shared	some	advice	about	how	to	adapt	from	support	 to	product:	“In
support	you	work	with	one	customer	at	a	time	to	solve	their	particular	need
and	make	them	happy.	As	a	PM	you	have	to	think	about	the	user	base	as	a
whole.	You	need	to	think	and	talk	about	things	in	terms	of	the	big	picture.
Articulate	how	an	issue	works	in	the	bigger	ecosystem.”

Transitioning	from	Other	Roles
Breaking	 into	 product	 management	 can	 be	 hard,	 but	 people	 with	 all	 kinds	 of
backgrounds	have	done	it.	Sometimes	the	trick	is	to	be	persistent.	Focus	on	how
your	skills	can	be	applicable	to	product	management,	and	don’t	stop	reaching	out
to	companies.

Here	are	some	skills	you	can	emphasize	when	looking	for	PM	roles:
	

Analysis.	 Do	 you	 work	 with	 data	 at	 your	 current	 job?	 Are	 you	 an	 Excel	 ninja?	Many	 software
companies	 are	 looking	 for	 data-driven	PMs	who	 can	make	 sense	 of	metrics	 and	draw	 insights
from	usage	patterns.

Customer	Focus.	Are	you	 in	a	customer-facing	role?	Have	you	 learned	how	to	 translate	customer
feedback	 into	 action?	 Companies	 love	 product	 managers	 who	 understand	 customers	 and	 their
needs.

Business	Savvy.	Are	you	comfortable	putting	together	business	cases?	Do	you	know	how	to	size	a
market?	Your	experience	can	be	a	real	asset	in	making	the	right	business	decisions.

Marketing.	Do	you	have	a	background	in	marketing?	Can	you	effectively	communicate	the	value	of
a	product?	Marketing	skills	can	help	a	PM	design	a	product	that	will	do	well	in	the	marketplace.

Industry	Expertise.	Do	you	have	deep	knowledge	of	how	your	industry	works?	If	so,	you	have	a	leg
up	on	applying	to	PM	jobs	in	that	industry.	Your	understanding	of	the	industry	means	you	can	be
a	productive	PM	in	a	short	amount	of	time.

Helpfulness.	 Could	 your	 team	 use	 some	 product	 management	 help?	 Do	 you	 have	 some	 extra
capacity	to	step	in?	Many	people	slide	into	the	PM	role	just	by	helping	out	when	there	was	a	gap.

When	trying	to	jump	to	a	PM	role,	compare	these	PM	skills	to	those	required	or
demonstrated	with	your	 current	position.	You’ll	need	 to	 find	ways	 to	patch	up
gaps	in	your	experience	and	skill	set.

Use	Your	Network
Don’t	 underestimate	 the	 power	 of	 networking	 to	 help	 you	 break	 into	 product
management.	 Especially	 if	 you’ve	 demonstrated	 relevant	 skills,	 having	 a	 co-
worker	speak	up	for	you	can	make	the	difference	in	convincing	a	team	to	take	a

chance	on	you.

Sara,	who	went	from	partner	technology	manager	at	Google	to	product	manager
at	 Twitter	 shared:	 “it	 was	 really	 critical	 that	 I	 knew	 people.	 I	 got	 in	 the	 door
through	the	people	I	knew.	Originally	there	wasn’t	any	PM	role	open;	they	didn’t
need	 any	more	PMs.	These	people	 really	 advocated	 for	me.	They	had	worked
with	me	at	Google	and	were	able	to	vouch	for	me.	I	got	into	the	company	as	an
internal	tools	PM.	Then	once	I	was	in	the	company,	I	transitioned	to	a	consumer
facing	team.”

What	Makes	a	Good	Side	Project?
One	 of	 the	 best	 ways	 to	 improve	 your	 candidacy	 for	 a	 product	 management
position	 is	 to	 start	 a	 side	 project.	The	 side	 project	 gives	 you	 a	 chance	 to	 gain
experience	shipping	a	product,	builds	up	your	resume,	shows	off	your	technical
skills,	 shows	 off	 your	 product	 design	 skills,	 and	 gives	 you	 a	 lot	 to	 talk	 about
during	your	interview.	If	you	hired	people	to	help	you,	it	might	also	give	you	a
chance	to	show	leadership	skills.

A	good	side	project	has	the	following	qualities:
	

Fills	in	the	gaps	in	your	experience.	For	example,	if	you	don’t	have	a	computer	science	degree,	you
can	show	off	your	technical	skills	by	building	a	website	or	mobile	app.	There	are	many	tutorials
online	that	you	can	follow	to	build	a	simple	app	for	free.

Shows	off	your	skills.	If	you’ve	got	great	visual	design	or	savvy	business	sense,	the	side	project	can
be	a	great	place	to	show	it	off.

Is	 something	you	can	speak	passionately	about.	Are	you	 solving	an	 important	problem?	Or	did
you	get	to	test	out	some	interesting	hypotheses?	Did	you	learn	a	new	technology?	Make	sure	you
can	tell	a	story	about	your	project.

If	you’re	not	technical,	you	have	a	few	options.	You	can	recruit	friends	to	help
you	with	 implementation.	You	 can	 hire	 people	 to	 build	 it.	You	 can	 also	make
your	side	project	about	discovering	the	feasibility	of	an	idea.	For	example,	you
can	design	the	product	and	create	a	marketing	website	that	describes	it	and	asks
people	to	sign	up	to	be	notified	when	it’s	available.	You	could	then	iterate	on	the
product	idea	and	see	how	that	affects	the	sign-up	rate.

Another	 good	 non-technical	 option	 is	 a	 design	 and	 usability	 project.	 Pick	 a
problem	 in	 the	 world	 or	 your	 local	 community	 and	 start	 talking	 to	 people,
observing	them,	and	coming	up	with	ideas.	Then	build	a	paper	prototype	and	test
it	out	with	people	-	bring	it	to	a	coffee	shop	and	ask	people	if	they’ll	try	it	out.
IDEO,	 a	 top	 design	 firm,	 has	 materials	 on	 Human-Centered	 Design	 on	 their
website	that	can	help	you	learn	more	about	running	these	projects.

When	 you	 choose	 your	 side	 project,	 be	 aware	 that	 interviewers	will	 often	 ask
you	a	 lot	of	questions	about	 it,	 so	be	honest	about	 the	motivations	for	 the	side

project	and	how	far	you	went	with	it.	It’s	perfectly	reasonable	to	build	a	mobile
app	to	brush	up	on	your	technical	skills,	to	get	experience	launching	a	product,
or	 to	try	out	some	new	design	paradigms.	In	fact,	 those	are	great	reasons;	 they
show	a	passion	for	learning	and	experimenting.

Be	 prepared	 to	 talk	 about	 how	 you	would	 improve	 the	 project	 if	 you	were	 to
continue	working	on	it,	why	you	made	the	choices	that	you	did,	and	how	it	was
and	wasn’t	 successful.	 If	you	have	any	positive	metrics	 (user	 signups,	 revenue
per	user,	etc.),	these	are	good	to	discuss.

Your	side	project	should	be	listed	on	your	resume	as	well	as	on	your	website,	if
you	 have	 one.	 It’s	 great	 if	 your	 side	 projects	were	 successful,	 but	 just	 having
done	something	shows	a	lot.	Don’t	be	afraid	to	list	“unsuccessful”	side	projects.

Career	Advancement
Chapter	5

Congratulations!	You’ve	 landed	your	dream	job	as	a	product	manager	working
with	a	team	you	love	on	a	product	you’re	passionate	about.	What	now?

Tips	and	Tricks	for	Career	Advancement
Working	hard	will	help	you	be	more	successful,	but	it’s	not	enough.	The	person
with	the	most	hours	is	not	always	the	one	who	lands	the	promotion.

What’s	equally	or	more	important	is	how	you	work	and	what	you	work	on.	As
you	build	your	career,	these	tips	will	help	you	achieve	greater	success.

Ship	great	products
As	a	PM,	the	biggest	measure	of	your	success	will	be	the	products	you	launch.
More	so	than	any	of	the	mocks	you	drew	or	specs	you	wrote	or	bugs	you	triaged,
you’ll	be	recognized	for	how	well	your	products	do	in	the	market.	If	customers
love	your	product	and	you’ve	got	a	viral	growth	rate,	you’re	in	good	shape.

At	the	end	of	the	day,	people	won’t	know	all	of	the	big	and	little	things	you	did
to	 make	 the	 launch	 possible.	 They	 will	 remember	 that	 you	 led	 the	 team	 that
delivered	a	successful	product.

Get	some	launches	under	your	belt
The	 product	 life	 cycle,	 from	 planning	 through	 implementation	 to	 launch	 and
beyond,	 sets	 the	 main	 rhythm	 for	 a	 PM.	 Each	 part	 of	 the	 life	 cycle	 requires
different	product	management	skills,	so	if	you	want	to	learn	and	improve,	you’ll
want	to	go	through	the	whole	life	cycle	several	times.

The	product	life	cycle	varies	in	length	from	team	to	team.	When	you’re	starting
out,	 you	 can	 pick	 up	 experience	 more	 quickly	 by	 finding	 teams	 with	 shorter
launch	cycles.

Become	the	expert
When	you	join	a	new	team	and	all	of	your	teammates	seem	so	smart,	it	can	be
tempting	to	just	shuttle	questions	to	other	people	since	they	know	so	much.	But
if	you’re	just	passing	questions	to	other	people,	you’re	not	really	adding	a	lot	of
value.

Instead,	make	sure	you	really	take	the	time	to	become	the	expert	on	your	areas
and	 your	 customers.	 Think	 about	what	 kinds	 of	 research	 you	 can	 do	 to	 really
understand	 the	 space.	Maybe	 you’ll	 want	 to	 visit	 customers	 or	 put	 together	 a

competitive	analysis.	You	can	look	at	data	and	metrics,	or	you	can	chat	with	the
sales	team.	Talk	to	as	many	stakeholders	as	you	can,	and	learn	the	background
from	your	team.

Once	 you’ve	 done	 your	 homework,	 you’ll	 feel	 like	 you	 really	 understand	 the
space	and	you	can	confidently	make	decisions.

Find	teams	where	you	can	pick	up	new	skills
“Seniority	is	all	about	experience,	but	there’s	a	catch,”	says	Chrix	Finne,	a	senior
product	manager	 at	Optimizely	 (and	 formerly	Google).	 “You	 can	 control	 how
fast	you	accumulate	experiences.”

If	you’ve	mostly	worked	on	improving	a	mature	product,	consider	joining	a	team
building	 a	 new,	 unlaunched	 product.	 If	 you’ve	 always	 worked	 on	 consumer-
facing	 products,	 consider	 trying	 something	 business	 facing.	 Look	 at	 your
skillset,	decide	which	skills	you	need,	and	then	find	a	place	where	you	can	learn
those	skills.

Pick	the	company	where	you’ll	learn	the	most
At	different	stages	in	your	career	there	will	be	different	things	you	need	to	learn.
You	can	optimize	your	learning	by	choosing	a	company	that’s	set	up	to	support
you.

When	 you’re	 a	 brand	 new	 PM,	 you’ll	 need	 to	 learn	 the	 basics	 of	 product
management.	You	might	want	to	pick	a	company	that	has	several	strong	PMs	to
learn	from.

Working	closely	with	PMs	is	an	excellent	way	to	pick	up	the	trade.	After	you’ve
been	 a	 product	 manager	 for	 a	 while	 you	 might	 want	 to	 increase	 your
responsibilities	and	learn	how	to	work	more	independently,	so	you	might	want	to
pick	a	smaller	company.

Choose	a	growing	company
At	 a	 growing	 company,	 new	 opportunities	 are	 always	 opening	 up,	 and	 you
quickly	become	one	of	the	more	senior	employees.	This	means	that	even	if	you
had	 to	 join	 a	 different	 team	 or	 take	 on	 different	 title	 from	 what	 you	 wanted,
you’d	likely	get	a	chance	to	transition	soon.

“If	you’re	in	a	growing	company	and	working	on	a	product	you’re	excited	about,
there	will	always	be	more	opportunities.”	said	Sara,	a	PM	at	Twitter	who	started
on	internal	tools	and	then	moved	to	customer-facing	teams.

Find	a	manager	who	believes	in	you
Many	 great	 PMs	 credit	 their	 success	 to	 great	 managers	 who	 gave	 them
opportunities	to	prove	themselves.	When	you’re	choosing	a	team,	don’t	just	look
at	the	product	-	also	consider	who	your	manager	would	be.

You	can	often	talk	to	other	PMs	at	the	company	to	learn	who	the	best	managers
are	and	who	are	 the	managers	 to	avoid.	Once	you	have	a	good	manager,	show
them	you	are	reliable	and	can	do	good	work.	Then,	talk	to	them	about	how	you
want	your	career	 to	grow,	and	be	brave	enough	 to	 take	on	 the	challenges	 they
give	you.

Focus	on	your	own	efficiency.
As	 a	 PM,	 you’re	 bombarded	with	 tasks,	 and	 you	 need	 to	 know	what	 you	 can
drop.	You	want	to	be	responsive	to	your	team	and	never	become	a	bottleneck,	so
it’s	important	to	prioritize	how	you	spend	your	time.

If	 you	 have	 trouble	 getting	 to	 “Inbox	 Zero”	 (no	messages	 in	 your	 inbox),	 try
learning	 a	 time	 management	 system	 like	 Getting	 Things	 Done.	 A	 few	 small
changes	to	your	routine	can	sometimes	make	a	big	difference	in	how	organized
you	are.	As	you	become	more	efficient,	you	will	feel	like	you	are	gaining	hours
in	the	day.

Understand	how	your	role	fits	into	the	company.
Career	advancement	as	a	PM	usually	means	expanding	the	scope	of	the	area	you
work	on.	You	might	start	by	working	on	a	feature,	move	to	PM-ing	a	larger	area,
and	then	eventually	own	a	whole	product	or	even	a	product	suite.

To	grow	in	this	way,	you	need	to	understand	how	the	pieces	fit	 together	 to	see
the	bigger	picture.	Ask	“How	does	my	 feature	 fit	 into	 the	product?”	and	 then,
“How	 does	 this	 product	 fit	 into	 the	 suite	 of	 products?”	 Think	 about	 the
connections	to	get	a	broader	picture.

Help	your	team	with	something	tangible	early	on.

Most	teams	are	a	little	bit	suspicious	of	new	PMs.	They’re	worried	you’ll	create
busy	work	for	them	or	slow	them	down	in	other	ways.	It	doesn’t	help	that	most
of	 the	work	a	PM	does	 is	behind	 the	 scenes,	 so	your	coworkers	might	not	 see
how	hard	you	work.	You	 can	 counteract	 their	 fear	 by	 focusing	on	helping	out
your	team	when	you’re	new.

Look	around	your	team	to	find	some	grunt	work	you	can	take	off	of	someone’s
hands,	 or	 do	 some	 research	 that	 people	 have	 been	 putting	 off	 (but	 really	wish
they	had	done).	This	is	an	easy	way	to	get	off	to	a	good	start	with	your	new	team
and	earn	goodwill	that	will	help	you	in	the	future.

Work	on	something	that’s	important	to	your	team	and
the	company.
Many	companies	will	start	new	people	off	on	unsexy	work	because	 it’s	a	 low-
risk	way	to	see	what	you	can	do.	In	these	cases,	you	want	to	do	an	amazing	job
on	your	unsexy	piece	and	prove	you	can	be	trusted	with	more	important	work.
Then	you	can	find	areas	you	think	are	important	and	offer	to	contribute	to	those.

Make	sure	you	draw	the	distinction	between	teams	that	are	just	unglamorous	and
teams	 that	 are	 truly	 unimportant.	 Infrastructure	 teams	often	 don’t	 sound	 like	 a
fun	 place	 to	 be	 a	 PM,	 but	 they’re	 critically	 important	 to	 the	 company.	 The
improvements	you	make	as	 an	 infrastructure	PM	can	be	magnified	 throughout
the	company,	so	they	can	be	a	great	place	for	career	advancement.

Take	on	cross-team	or	company-wide	tasks.
At	 some	 point	 in	 your	 career,	 your	 visibility	 across	 the	 company	 is	 going	 to
matter	 if	you	want	 to	be	promoted	 to	higher	positions.	Sometimes	you	can	get
this	visibility	 just	by	 launching	big	projects	 that	are	 important	 to	 the	company,
but	there	are	other	ways	to	get	your	name	out	there.

By	 leading	 and	 doing	 a	 good	 job	 on	 big	 company-wide	 projects	 such	 as	 UI
reviews	or	goal	 setting,	you	help	more	people	across	 the	company	 think	about
you	as	a	good	PM.	Similarly,	you	can	 teach	a	class	or	present	at	 an	all-hands.
When	a	committee	is	deciding	if	you’ll	get	promoted	to	the	next	level,	it’s	great
for	all	of	them	to	have	heard	your	name	and	appreciated	your	work.

Another	 reason	 this	 cross-team	 work	 is	 valuable	 is	 that	 it	 helps	 you	 form
relationships	 with	 people	 throughout	 the	 company.	 Sometimes	 work	 between

teams	 can	 be	 tough,	 but	 it	 goes	 much	 more	 smoothly	 if	 you	 already	 have	 a
friendly	relationship	with	the	PM	on	the	other	team.

Define	and	measure	success.
One	way	to	really	stand	out	as	a	PM	is	to	get	more	concrete	about	what	success
means	for	your	team.	Depending	on	the	project,	success	might	mean	more	user
growth,	increased	revenue,	or	increased	customer	engagement.	For	other	projects
you	might	have	a	more	specific	feature-based	goal.

Think	 about	 what	 you’re	 aiming	 for,	 communicate	 that	 to	 your	 team,	 and
measure	whether	 you’re	 hitting	 it.	 This	makes	 it	 clear	when	 you’re	 achieving
your	goals	 and	helps	you	 learn	when	you	don’t.	Once	you’re	clear	 about	your
goals,	 you	 can	 better	 prioritize	 what	 work	 is	 helping	 you	 and	 what	 work	 is
unimportant.

Don’t	let	your	team	do	unimportant	work.
Sometimes	big	companies	lose	track	of	all	the	projects	going	on,	and	you	might
be	assigned	as	the	only	PM	for	a	team	that’s	really	not	delivering	much	value	for
the	company.

Ideally,	you’d	redirect	the	team	to	work	on	something	more	important.	If	that’s
not	possible,	 consider	 suggesting	 to	your	manager	 that	 the	 team	be	 shut	down
(make	sure	you	do	your	research	and	can	support	this)	or	consider	switching	to
another	 team.	 It	will	be	hard	 to	get	promoted	 launching	a	product	 that	doesn’t
matter.

Don’t	just	do	what’s	asked	of	you.	Get	the	job	done.
As	a	new	PM,	it	can	be	tempting	to	think	of	your	work	in	terms	of	deliverables
such	as	proposals,	specs,	and	analyses,	and	 then	 to	 think	you’re	done	once	 the
document	is	written.

Those	documents	 aren’t	 your	 job;	 they’re	 just	 the	 tools	 you	use	 to	get	 results.
Make	sure	your	engineers	use	the	specs	to	build	features,	or	rewrite	the	specs	or
find	 another	 way	 to	 get	 your	 ideas	 across.	 If	 you	 made	 a	 proposal,	 did	 you
convince	your	team	to	pick	it	up?	If	not,	find	another	way	to	make	your	point.

Demonstrate	you	can	consistently	deliver	work	at	the

next	level.
Most	of	the	larger	companies	have	an	explicit	career	ladder	with	descriptions	of
the	 skills	 needed	 at	 each	 level.	 These	 ladders	 can	 be	 frustrating	 because	 they
look	 so	 explicit	 and	 concrete,	 and	 yet	 PMs	 can	meet	 all	 the	 requirements	 for
their	current	level	without	being	promoted.

Two	things	are	going	on	here.	First,	you	need	to	meet	all	the	requirements	for	the
next	 level	 before	 being	 promoted	 into	 it.	 Second,	 you	 need	 to	 have	 earned	 a
reputation	 for	 consistently	 and	 repeatedly	 delivering	 work	 at	 that	 level.
Sometimes	you’ll	have	shown	you	can	deliver	on	a	requirement	once,	but	your
team	doesn’t	have	the	confidence	yet	that	you’ll	be	able	to	repeat	that.

Find	a	mentor	(or	mentors).
PMs	have	all	kinds	of	different	skills.	Some	people	are	really	good	at	coming	up
with	 a	 vision	 for	 their	 team,	while	 others	 are	 great	 at	 data	 analysis	 or	 design.
Identify	people	who	you	think	are	really	strong	in	an	area	and	reach	out	to	them.

When	reaching	out	to	a	mentor,	be	specific.	Maybe	you’re	trying	to	build	a	case
for	your	idea	and	reach	out	to	someone	who’s	really	persuasive	to	ask	for	help
on	 how	 to	 frame	 your	 proposal.	 Maybe	 you	 want	 to	 show	 your	 mocks	 to
someone	 who’s	 really	 strong	 in	 usability.	 Being	 purposeful	 makes	 the
relationship	better	for	both	of	you.

Build	credibility.
“Credibility	 is	 the	 currency	 of	 a	 PM,”	 says	 Daniel,	 a	 Google	 engineer	 who
became	a	Google	PM.	As	a	PM,	you	want	 to	gain	the	respect	of	everyone	you
work	with,	whether	they	be	other	product	managers	or	people	from	other	roles.
You	 especially	want	 to	 earn	 a	 good	 reputation	with	 leaders	 of	 other	 teams	 so
they’ll	want	their	people	to	work	with	you.

The	 most	 straightforward	 way	 to	 build	 credibility	 is	 delivering	 results.	 Your
teammates	 all	 want	 a	 good	 outcome,	 so	 they’ll	 naturally	 start	 out	 second
guessing	your	opinions,	asking	lots	of	questions,	and	suggesting	different	ways
of	doing	things.	However,	over	time	they’ll	start	to	see	that	you’re	showing	good
judgment	and	getting	things	done,	and	they’ll	feel	comfortable	trusting	you.

Another	way	 to	 build	 credibility	 is	 paying	 attention	 to	 people’s	 perceptions	 of
you	and	ensuring	that	you’re	creating	the	perception	you	want.	Make	sure	you’re

building	a	reputation	as	a	smart,	skillful,	competent,	and	dependable	person	with
good	 judgment.	 It	 can	 be	 hard	 to	 get	 feedback	 directly	 from	 people	 on	 your
reputation,	so	it	might	be	worthwhile	to	ask	your	manager.

Q	&	A:	Fernando	Delgado,	Sr.	Director,	Product
Management	at	Yahoo

How	 did	 you	 make	 such	 a	 big	 jump	 from	 being	 a
product	manager	at	Google	to	being	a	senior	director
at	Yahoo?
I	decided	to	move	to	Yahoo	relatively	early	after	Marissa	joined	as	CEO.	I	was
taking	a	big	of	 leap	of	faith.	I	 think	joining	so	early,	when	it	was	risky,	helped
me	 personally	 figure	 out	 a	 role	 I	 was	 excited	 about	 and	 gave	 me	 a	 bit	 of
leverage.

In	 large	companies,	 it’s	 really	hard	 to	make	big	 jumps	 if	you	 stay	 in	 the	 same
company.	They	have	 really	set	ways	about	how	they	do	promotions.	There	are
people	who	 are	 put	 on	 the	 fast	 track,	 but	 they	 still	 have	 to	 go	 step	by	 step.	 If
companies	didn’t	do	it	that	way,	there’d	be	lots	of	upset	people.

It’s	pretty	obvious	to	me	that,	in	big	companies,	the	only	way	to	make	big	jumps
is	to	jump	to	another	one.	You	get	a	big	reward	if	you	take	a	lot	of	risk.	You	can
go	to	a	startup.	Or	you	find	a	very	unique	opportunity	like	I	had,	where	a	large
company	gets	a	new	CEO	and	is	willing	to	look	at	things	with	a	new	lens.

This	 might	 cause	 you	 to	 conclude	 that	 the	 only	 way	 to	 make	 big	 jumps	 is
switching	 every	 year	 or	 two,	 but	 that’s	 not	 what	 I’d	 advocate.	 You	 want	 to
become	 an	 expert	 in	 certain	 areas	 and	 be	 given	 the	 opportunity	 to	 get	 these
chances.	If	a	company	sees	 that	someone’s	never	been	with	the	same	company
for	more	 than	18	months,	you’ll	assume	 it	will	be	 the	same	for	 them	and	 they
won’t	want	to	make	an	investment.	So	stay	a	good	few	years	before	you	make
those	jumps.

What	were	some	of	the	key	breakthrough	moments	in
your	career?
When	 I	 went	 to	 work	 on	 Google	 Maps	 in	 Zurich.	 That	 was	 a	 breakthrough
moment	 for	me.	 In	my	 first	year	 as	an	APM,	 I	worked	on	Google	web-search
quality.	When	I	moved	to	Maps,	one	of	my	first	assignments	was	search	quality
on	Maps.

There	were	some	ideas	and	frameworks	that	were	working	well	on	web	search,
but	they	weren’t	being	used	much	in	Maps	yet.	That	meant	that	I	could	bring	in
some	of	the	lessons	from	web	search	to	Maps—some	of	the	things	that	we	knew
worked.

I	was	able	to	work	in	a	product	that’s	the	most	successful	in	its	industry	[Google
Search]	and	take	lessons	I	learned	there	to	another	product.	Because	I	had	first-
hand	 experience	with	 the	ways	 a	 cutting-edge	 team	 did	 things,	 I	 had	 value	 to
bring	 to	a	different	product.	 I	brought	a	new	rigor	and	emphasis	on	 techniques
that	ended	up	being	successful	in	a	new	product.	Some	things	were	different	of
course,	but	at	the	end	of	the	day,	the	fundamental	ideas	were	the	same	and	they
worked	well.

Another	part	of	 this	was	 that	 I	moved	 to	Zurich.	A	 lot	of	people	 in	 the	Zurich
office	hadn’t	had	a	chance	to	experience	how	web	search	did	things	in	person.	I
brought	a	new	perspective	that	most	people	hadn’t	encountered.	This	allowed	me
to	have	credibility	with	the	engineers	there.

At	some	point,	you	become	well	versed.	You	have	exposure	and	see	the	patterns,
and	this	helps	you	do	things	better	and	better	every	time.	It	gives	you	a	leg	up	in
your	 career.	 In	 Zurich,	 I	 had	 the	 self-realization	 that	 even	 though	 the	 product
roles	 are	 different,	 there’s	 value	 in	 bringing	 over	 lessons	 from	 other	 places,
especially	if	you’ve	had	an	opportunity	to	work	on	a	leading	team.

Another	 example	 of	 this:	 Facebook	 and	Twitter	 have	 been	 really	 successful	 at
having	and	nurturing	growth	teams.	Some	of	that	culture	has	started	to	have	an
impact	 on	 and	 show	 the	way	 for	 startups.	 PMs	who	 have	worked	 on	 product
growth	 have	 skills	 that	 would	 be	 applicable.	 Even	 though	 growing	 from	 zero
users	to	five	million	users	is	different	than	growing	from	10	million	users	to	50
million	users,	a	lot	of	the	general	lessons	can	be	applied.

What	 advice	 would	 you	 give	 to	 a	 PM	who	 wants	 to
advance	in	their	career?
It’s	important	to	realize	that,	in	a	lot	of	PM	roles,	you	get	to	a	tipping	point,	after
which	making	decisions	 and	working	with	 a	 team	become	a	 lot	 easier.	Things
flow	more	naturally.	You	get	less	cynicism	and	skepticism	from	engineers,	and	it
enables	a	friendlier	environment.

Reaching	that	tipping	point	should	be	a	big	thought	when	you	start	a	new	role.
Circumstances	 can	 make	 it	 easier	 or	 harder.	 Currently,	 I’m	 leading	 mobile
development	for	the	Yahoo	mobile	app	for	iPhone	and	Android.	The	team	started
as	a	designer	and	myself	and	has	grown	significantly.	I	assembled	my	team	and
that	got	me	past	the	tipping	point	and	made	a	lot	of	things	easier.

I’ve	been	in	projects	where	I	felt	like	I	could	not	get	past	that	tipping	point.	The
decision	at	that	point	was	to	move	on	to	a	new	project.	On	the	Android	Market
team,	 there	were	a	 lot	of	difficulties	 in	 terms	of	 strong	opinionated	 leadership,
but	no	single	clear	 leader.	The	consequence	of	having	such	 team	structure	was
making	 compromised	 decisions,	 often	 picking	 the	 wrong	 tradeoffs.	 Individual
engineers	could	see	this	happening,	which	made	it	difficult	for	me	as	a	PM	to	get
past	the	tipping	point.

Larry,	the	CEO,	tried	to	get	teams	to	have	a	single	decision	maker	at	the	top,	but
on	my	team	that	figure	wasn’t	well	identified.	A	lot	of	the	engineering	leadership
had	 strong	 product	 opinions,	 which	 can	 be	 fine,	 but	 I’m	 also	 strongly
opinionated.	Working	 on	 the	 team	 involved	 clashes	 that	 were	 hard	 to	 resolve
without	conflict.

Android	 was	 a	 very	 successful	 product,	 and	 people	 had	 a	 culture	 of	 working
really	hard.	 I	 felt	 like	because	of	 the	structure	of	 the	 team,	not	everyone	could
get	rewarded	for	their	work.	This	coincided	with	my	first	daughter	being	born.	I
was	spending	a	lot	of	time	at	work	in	an	intense	environment	and	was	not	getting
rewarded	for	it.

I	saw	I	wasn’t	going	to	go	past	the	tipping	point	because	other	people	had	been
with	the	team	longer	than	I	had.	When	push	came	to	shove,	they	got	their	way.	I
was	 coming	 home	 from	 work	 frustrated.	 When	 I	 joined	 Android	 we	 had	 50
million	 users	 and	 we	 grew	 to	 350	 million	 users	 while	 I	 was	 there.	 This	 was
something	to	be	really	proud	of—to	contribute	to	this	great,	successful	product,
which	 was	 growing	 exponentially.	 But	 I	 was	 sacrificing	 my	 work/personal
balance	with	no	clear	path.	So	I	decided	to	switch	teams.

I’ve	been	more	conscious	about	figuring	out	the	tipping	point	and	how	to	pass	it.
Some	factors	are	in	your	control,	and	some	are	out	of	your	control.	Pick	a	place
where	you	can	stay	long	enough	that	you’ve	been	on	the	team	longer	than	most
people.	Think	about	how	long	you’re	willing	to	stick	with	a	product.	You	cannot
speed	up	time,	but	you	can	choose	a	place	where	you’re	more	likely	to	become	a

senior	member	of	the	team.

As	an	early	 tip,	be	as	much	of	an	observer	as	you	can.	Don’t	 try	 to	disrupt	or
change	 things	 too	 much	 early	 on.	 You’ll	 come	 to	 a	 product	 and	 have	 your
conceptions	of	what	needs	to	change,	but	most	times	there’s	a	culture	of	making
decisions	and	reasons	for	why	things	haven’t	been	high	priority	in	the	past.	You
don’t	want	to	pull	the	trigger	too	quickly.

Understand	the	context	of	things.	Be	more	inquisitive.	Instead	of	telling	people
what	to	do	or	trying	to	make	decisions,	try	to	ask	questions.	Why	is	this	the	way
it	is?	Try	to	understand	the	context	and	history	instead	of	being	the	new	dictator
of	the	team.

Another	tip	to	get	that	tipping	point	early	on	is	to	demonstrate	value	to	people.
Make	it	so	the	fact	that	you’re	there	is	driving	something	that	wouldn’t	happen	if
you	weren’t	there.	There’s	often	administrative	or	boring	work	that	isn’t	getting
done.	People	agree	that	it	should	get	done	and	has	value;	it	just	isn’t	at	the	top	of
anyone’s	list.

For	example,	let’s	say	you’re	working	on	a	news	product	and	you	need	to	show
the	logo	of	the	news	sources.	Currently	it’s	a	manual	process	to	pick	up	the	logo,
so	offer	to	do	this	for	them.	Find	a	scalable	way	to	do	it,	maybe	scraping,	maybe
using	Amazon	Mechanical	 Turk.	 Remove	 busy	 administrative	 or	 boring	work
from	people,	but	make	sure	it’s	in	a	way	that	actually	adds	value	to	the	product.

Another	tip	for	more	senior	PMs:	Figure	out	your	own	framework	and	principles
for	 how	 you	make	 decisions,	 and	 communicate	 that	 as	 often	 as	 you	 can.	You
start	developing	these	frameworks,	but	sometimes	they’re	not	obvious	to	people
around	you.

Make	it	clear	to	the	people	around	you	why	you’re	making	a	particular	decision
so	they	see	that	you’re	consistent	with	your	decisions.	There’s	nothing	engineers
hate	more	than	subjective	decisions	that	change	from	one	day	to	another.	If	you
develop	that	framework	and	those	principles,	it	helps	people	realize	that	you	are
consistent.

As	an	example,	Adam	Cahan,	the	Senior	VP	of	the	mobile	org,	has	an	incredible
eye	for	animations	and	transitions	on	mobile.	Every	time	you	bring	him	a	new
build	of	 the	app,	he	might	notice	 that	one	of	 the	 transitions	 is	 inconsistent.	He
doesn’t	have	a	strong	opinion	on	how	you	do	transitions,	but	he	cares	that,	once

you	pick	a	metaphor	or	general	mental	model	of	the	app,	you	stick	with	it.

If	you	pick	transitions	where	you	get	a	sense	of	depth	and	go	deeper	and	deeper,
that’s	fine,	but	then	never	violate	that	principle	when	you	open	a	settings	pane.
Take	the	metaphor	for	your	app	and	use	it	across	the	board.

When	you	come	to	him	with	a	fancy	animation	for	something	and	he	tells	you
not	to	do	it,	you	might	feel	resistant	at	first.	But	because	he’s	communicated	his
principles	so	clearly,	you	realize	that	he	has	a	good	reason.

Another	example	is	that	I	try	to	make	sure	that,	as	much	as	possible,	when	you
open	the	mobile	app,	you	get	straight	to	the	value	with	as	few	bumps	as	possible.
So	if	we’re	adding	a	feature	that	won’t	be	used	by	everyone,	we	avoid	welcome
screens	 and	 tutorials.	My	 position	 is	 always:	 don’t	 show	 it	 up	 front.	 You	 can
educate	people,	but	don’t	put	the	bump	up	front.

Over	time	we	realized	that	if	you	stick	to	that	principle,	you	find	other	ways	of
doing	things.	So,	we	have	shortcuts	for	power	users.	But	we’ll	only	show	in-app
hints	and	popups	 if	we	know	for	 sure	 that	you’re	 interested	 in	 the	 feature.	We
wait	until	you	used	a	feature	in	the	non-shortcut	way	and	used	it	enough	that	our
popup	hint	about	the	shortcut	will	make	sense	to	you.

Q	&	A:	Ashley	Carroll,	Senior	Director	of	Product
Management,	DocuSign

Tell	me	a	little	about	your	career	path.
I	started	at	JPMorgan	out	of	undergrad,	because	that’s	what	you	did	at	that	time
with	 an	 econ	 degree.	 I	 was	 in	 the	 San	 Francisco	 office	 so	 I	 ended	 up	 sitting
within	the	Tech,	Media,	and	Telecom	group.	It	was	great	because	I	learned	about
all	these	great	internet	and	software	companies.

Following	the	Shutterfly	IPO,	which	was	led	by	JPMorgan,	I	joined	Shutterfly	as
a	business	 analyst.	 It	was	 a	great	 first	 role	 at	 an	operating	 company	because	 I
supported	a	variety	of	functional	areas	with	reporting	and	analysis,	and	I	got	to
see	how	they	spent	their	time.	I	got	really	interested	in	seeing	how	new	features
and	 changes	 to	 the	 UX	 (user	 experience)	 would	 affect	 customer	 engagement
metrics	and	ultimately	revenue.	I	also	found	that	I	really	enjoyed	working	with
engineers	 and	 designers;	 I	 wanted	 to	 be	 more	 involved	 in	 creating	 things	 to
delight	 customers.	 A	 couple	 of	 years	 later,	 I	 left	 to	 pursue	 an	 MBA,	 mostly
because	I	felt	it	would	be	an	efficient	way	to	move	from	analytics	to	product.

I	 did	 a	 couple	 internships	 before	 and	 during	 business	 school	 -	 at	 oDesk	 and
Amazon	Web	 Services	 -	 which	 were	 a	 great	 way	 to	 get	 a	 taste	 for	 different
company	 sizes,	 cultures,	 and	 sub-sectors.	 After	 business	 school,	 I	 joined
SurveyMonkey’s	 product	 team.	 I	 started	 out	 as	 an	 individual	 contributor
focusing	 on	 growth	 initiatives,	 like	 launching	 new	 plans	 and	 overhauling	 new
user	onboarding.	I	eventually	grew	into	managing	the	platform	team,	which	was
responsible	for	things	like	identity,	billing,	and	enterprise	features.

I	left	SurveyMonkey	a	few	years	later	to	lead	product	at	Optimizely	where	I	built
the	beginnings	of	the	product	team	from	the	ground	up.	The	role	turned	out	to	be
a	bit	different	from	what	I	expected	and	wanted	so	I	left	after	about	six	months.	I
decided	 to	 do	 some	 consulting	 work	 to	 get	 to	 know	 any	 potential	 team	 (and
manager)	 before	 committing.	After	 a	 couple	months	of	 spending	 two	days	per
week	 at	 DocuSign,	 I	 was	 hooked.	 I	 converted	 to	 full	 time	 and	 am	 currently
overseeing	growth,	which	is	really	exciting	given	the	stage	of	the	company	and
viral	nature	of	the	product.

What	were	some	of	the	key	breakthrough	moments	in

your	career?
When	I	was	working	as	a	business	analyst	at	Shutterfly,	a	PM	left.	Because	I	was
already	familiar	with	 the	metrics	 for	 that	product	 line,	 I	had	 the	opportunity	 to
step	 in	 and	 gain	 some	 PM	 experience.	 Having	 the	 opportunity	 to	 get	 some
product	work	while	at	Shutterfly	was	crucial.	Post-business	school,	I	was	able	to
reference	 this	 experience	 and	 provide	 concrete	 examples	 around	 product
launches	and	tough	UX	decisions.

I	can’t	say	enough	good	things	about	SurveyMonkey.	I	feel	so	lucky	to	have	had
the	 opportunity	 to	work	 there	when	 I	 did.	 The	 leadership	 team	 is	 really	 great
about	growing	talent	and	giving	people	the	room	and	support	they	need.	I	would
get	a	new	project	or	responsibility,	have	no	idea	how	to	do	it,	figure	it	out	with
help	from	my	boss	and	the	team,	and	then	take	on	additional	new	responsibilities
before	I	had	time	to	get	bored.

My	current	role	was	very	much	the	result	of	being	at	the	right	place	at	the	right
time.	I	was	introduced	to	DocuSign	just	as	they	were	building	out	their	product
team.	The	company	had	a	strong	lineup	of	enterprise	software	veterans,	but	they
were	 in	 the	 market	 for	 product	 folks	 from	 more	 consumer	 and	 UX-focused
backgrounds.	 The	 result	 is	 that	 my	 role	 is	 a	 perfect	 mix	 of	 things	 I’ve	 done
before	that	I’m	very	comfortable	with	and	new	challenges	that	push	me	outside
of	my	comfort	zone.

What	 advice	 would	 you	 give	 to	 a	 PM	who	 wants	 to
advance	in	their	career?
Join	a	company	that’s	experiencing	(or,	even	better,	about	to	experience)	hyper-
growth.	The	business	will	 be	growing	 faster	 than	 the	 team	can	 scale	 so	you’ll
have	 lots	 of	 room	 to	 grow	 in	 terms	 of	 responsibility.	 The	 venture	 capital
community	can	be	a	great	resource	here;	they	value	meeting	talent	(you!)	just	as
much	as	you	value	getting	job	leads	so	it’s	a	great	symbiotic	relationship.

Make	 who	 you	 work	 with	 your	 top	 priority.	 They’re	 your	 best	 resource	 for
learning.	And	since	things	in	tech	can	get	stressful,	 it’s	 important	 to	make	sure
they’re	 genuinely	 good	 people.	 The	 best	 way	 to	 vet	 people	 is	 to	 work	 with
people	you’ve	worked	with	before.	That’s	obviously	 tough	 in	 the	beginning	of
your	career,	but	with	enough	scrappiness	you	can	probably	find	second	or	third
degree	connections.	Another	option	is	to	“try	before	you	buy”	via	consulting.

It’s	 important	 to	 have	 a	manager	 and	 executive	 leadership	 team	 you	 trust	 and
believe	 in.	 It’s	 tempting	 to	 chase	more	 senior	 roles	 at	 a	 startup	 early	 in	 your
career,	but	I’m	really	thankful	for	the	time	I’ve	spent	working	under	experienced
exes.	At	 this	point	of	my	career,	 I’d	 rather	work	for	someone	I	can	 learn	from
and	ask	questions	of	than	be	at	the	top.

It	 sounds	 trite,	 but	 it’s	 a	 small	 Valley	 (and	 beyond).	 Good	 employers	 will	 do
official	 and	 unofficial	 reference	 checks,	 so	 it’s	 important	 to	 actually	 be	 the
person	you	want	 to	be.	That	doesn’t	 just	mean	working	hard	and	acting	smart;
it’s	more	 being	 honest,	 staying	 humble,	 and	 genuinely	 caring	 about	 the	 team.
Those	are	the	things	that	make	me	want	to	work	with	someone.

Q	&	A:	Brandon	Bray,	Principal	Group	Program
Manager,	Microsoft

Tell	me	a	little	bit	about	your	career.
I’ve	 always	 been	 in	 program	management.	 I	 started	 in	Microsoft	Office	 as	 an
intern	 on	 Outlook	 over	 two	 summers.	 After	 college,	 I	 came	 to	 Microsoft	 on
Visual	Studio	on	the	team	where	C#	began,	which	also	happens	to	be	the	team
where	C++	was.

I	 started	 on	 the	C++	 backend,	 so	 it	was	 very	 technical.	 Some	 people	 think	 of
program	management	as	just	frontend,	but	I	worked	with	AMD	and	Intel,	all	of
the	silicon	vendors.	It	was	really	fun.

After	doing	that	for	a	while,	I	switched	to	the	other	side	of	the	C++	compiler.	I
designed	the	language	for	the	C++	CLI	[common	language	infrastructure].	I	got
to	travel	all	over	the	world	and	work	with	ECMA	and	ISO	and	all	the	companies
that	are	moving	the	language	forward.

Then	I	decided	to	broaden	my	experience.	I	took	on	a	project	management	role
and	 became	 a	 lead	 at	 the	 same	 time.	 I	 took	 the	 project	 management	 role	 to
deliver	 Visual	 Studio	 2008.	 This	 was	 still	 a	 program	 management	 role,	 but
specifically	 around	 release	 management.	 Program	 managers	 usually	 do	 just	 a
little	 bit	 of	 project	 management	 and	 spend	 a	 lot	 of	 time	 on	 design.	 Release
managers	 pay	 attention	 to	 exit	 criteria,	 and	 all	 of	 the	 other	 pieces	 of	 project
management	to	make	the	entire	release	go	well.

After	that,	I	went	to	China	for	a	year	and	built	up	a	PM	team	in	Shanghai.	That
was	when	I	realized	that	most	people	learn	to	be	PMs	from	watching	other	PMs.
In	Shanghai,	there	weren’t	many	other	PMs	around.	So	I	had	to	find	another	way
to	help	these	PMs	learn.

Next,	I	came	back	to	the	US	and	became	a	group	program	manager	on	the	.NET
Framework.	Group	program	manager	is	the	second-level	manager.	I	helped	ship
Windows	8	and	 then	moved	 to	 the	C#	and	Visual	Basic	 team.	The	 team	had	a
new	compiler,	but	it	didn’t	look	like	it	was	going	to	be	ready	on	time,	so	I	helped
get	it	over	the	shipping	hump.

And	most	recently	I	switched	to	a	new,	unreleased	hardware	project.	I	decided	to

switch	back	to	an	individual	contributor	role	for	a	change,	and	I’ll	be	working	to
make	sure	we	have	a	great	development	platform.

What	were	some	of	the	key	breakthrough	moments	in
your	career?
One	 that	 definitely	 was	 a	 highlight	 of	 my	 career	 was	 writing	 the	 language
specification	 that	 eventually	became	a	 standard	 for	C++	and	 the	CLI.	 I	 had	 to
work	with	people	from	different	companies.

This	was	where	I	learned	that	whoever	writes	things	down	has	the	power.	People
in	 different	 disciplines	 such	 as	 test	 and	 dev	 think	 that	 PMs	 make	 all	 the
decisions.	Then	when	they	switch	over	and	they	wonder	how	they	got	to	make
decisions,	 and	 it’s	 because	 whoever	 writes	 things	 down	 records	 history.	 The
ways	you	write	things	down	and	what	you	write	down	define	history.	The	power
of	the	pen.

I	got	to	have	more	influence	on	the	way	things	should	work	out.	Also,	writing	is
thinking.	 If	 you	 go	 through	 the	 details	 of	 writing	 things	 down,	 you	 end	 up
thinking	about	the	corner	cases.

Another	moment	that	I	talk	about	is	around	the	impact	you	can	have	really	early
in	your	 career.	One	of	 the	 first	 things	 I	 did	on	 the	C++	compiler	was	 the	 /GS
feature	 [buffer	security	check].	This	 feature	was	built	 in	 response	 to	 the	buffer
overrun	attacks.	The	team	had	built	something	to	counteract	buffer	overruns,	but
it	missed	a	lot	of	cases.	I	looked	to	see	what	was	needed	to	make	it	really	useful.

Then,	I	talked	to	all	of	the	teams	at	Microsoft	and	convinced	them	to	use	the	new
compiler	and	rebuild	their	code	with	this	switch.	It	was	a	lot	of	work,	but	it	made
a	big	difference	in	the	security	of	our	products.

The	last	key	breakthrough	has	been	as	a	manager	in	the	past	few	years.	Shaping
how	PMs	 think	 and	 shaping	 the	 culture	 of	 a	 PM	 team	 have	 been	 fun	 for	me.
Working	on	some	of	the	really	technical	teams	it’s	really	easy	to	forget	that	there
are	different	 styles	of	customers	out	 there.	There	are	developers,	end	users,	 IT
staff,	and	so	forth.	We	had	 to	really	focus	and	remember	 that	electrons	are	not
our	 customers;	 people	 are	 our	 customers.	 I’ve	 helped	 my	 team	 remember	 to
think	about	how	people	experience	what	we	do.

Were	 there	 any	 things	 you	 did	 that	 helped	 you	 get
promoted?
My	time	as	an	intern	helped	me	go	from	PM	1	to	PM	2	quickly.	I’d	learned	how
to	be	a	program	manager	 from	my	 internships.	 I	was	promoted	 into	 the	 senior
band	around	the	same	time	as	I	became	a	lead	and	a	project	manager.	I’d	written
down	 that	 I	wanted	 to	 be	 a	 lead	 at	 some	point,	 and	 the	 team	came	 to	me	 and
asked	me	to	be	a	lead	since	they	needed	someone	to	do	the	work.

For	being	promoted	into	the	principal	rank,	I	took	on	a	division-wide	procedure	-
what	we	called	Fundamentals	and	Tenets.	It	was	a	system	to	go	through	all	the
pieces	 for	 a	 successful	 product:	 security,	 performance,	 reliability,	 world
readiness,	privacy,	compliance,	things	like	that.	So	it	was	a	process	to	make	sure
all	those	things	happened,	but	it	wasn’t	going	well	at	all.	They	gave	it	to	me	to
run.

I	worked	at	 the	divisional	 level	with	all	of	 the	product	 teams.	 I	had	 to	engage
with	 300	 people	 to	 get	 things	moving	 along,	 and	 I	 got	 it	 to	 the	 place	where	 I
turned	the	problem	around.	It	was	fighting	a	fire.	Since	that	project	had	a	really
large	scope,	that	took	me	to	the	principal	level.

What	advice	would	you	give	to	someone	interviewing
to	become	a	PM?
The	thing	I	tell	everyone	is	that	a	PM	is	an	expert	in	their	customer.	That’s	what
sets	 them	apart	 from	 the	developers	 and	 testers.	A	PM	on	Excel	 has	 to	be	 the
expert	in	the	kind	of	things	people	do	on	Excel.	Those	people	might	be	quants	or
other	kinds	of	number	crunchers.	Developers	on	Excel	don’t	need	to	understand
quants,	but	the	PM	does.

In	 my	 space,	 those	 customers	 are	 developers.	 And	 that	 brings	 me	 to	 another
point:	you	have	to	really	like	your	customers.	If	developers	are	your	customers,
you	 need	 to	 be	 able	 to	 get	 into	 their	mindset	 and	 be	 the	 customer	 yourself.	 If
you’re	 a	 PM	 for	 a	 game,	 you	 should	 really	 sympathize	 with	 and	 understand
gamers.	Same	thing	if	your	customers	are	database	admins.

When	I’m	interviewing,	the	thing	I	check	for,	no	matter	what,	is	passion.	Do	you
care	enough	about	your	work	that	you’re	spending	your	free	time	learning	about
it?

As	advice	for	someone	new,	make	sure	you	find	a	job	where	you’re	interested	in
doing	 something	 outside	 of	work.	Whether	 it’s	 going	 home	 and	working	 on	 a
project	or	a	going	to	a	meetup	or	going	to	conferences.	Something	that	extends
what	you	have	to	do	on	a	day-to-day	basis.	If	you	have	that	passion	and	a	drive
for	learning,	you’re	set	up	to	be	an	awesome	PM.

Sometimes	people	 ask	me	 if	 you	 can	work	on	 a	 team	when	you	don’t	 already
know	the	area.	If	you’re	interested	in	the	area	and	have	a	drive	for	learning,	you
can	 be	 successful	 in	 any	 group.	 People	 learn	 really	 well	 when	 they	 have	 an
objective	in	front	of	them.	Great	PMs	have	an	enormous	impact	on	their	team’s
efficiency,	so	the	people	on	the	team	are	incentivised	to	help	the	PM	learn.

As	 another	 interviewing	 tip,	 when	 I’m	 interviewing	 and	 I	 want	 to	 tell	 if	 the
person	 should	be	 a	dev	or	 a	PM,	 I’ll	 usually	 ask	questions	 that	 can	go	 in	 two
different	 directions.	 You	 can	 either	 start	 designing	 the	 solution	 and	 building
algorithms,	or	you	can	step	back	and	talk	about	who	the	customers	are,	what	the
goals	are,	and	start	defining	success.

Good	 PMs	 can	 start	 down	 the	 implementation	 path,	 but	 pretty	 quickly	 they
realize	 they	 need	 to	 step	 back	 and	 talk	 about	 the	 customer.	 If	 they	 don’t,	 it’s
pretty	obvious	they	don’t	have	the	inherent	starting	ability	to	be	a	PM.	It	has	to
be	a	trained	skill.

If	 you’re	 interviewing	 to	 be	 a	PM,	 it’s	 good	 to	 look	 at	 every	problem	 starting
with	“Who	is	the	customer?”	and	“What	is	success?”	I	do	that	all	the	time.	I’ll	be
at	a	stoplight	in	a	traffic	intersection	and	will	think	“How	can	I	make	this	better?
Who	am	I	making	this	better	for?”	These	problems	show	up	all	the	time,	so	you
can	train	yourself	to	think	this	way.

Q	&	A:	Thomas	Arend,	International	Product	Lead,
Airbnb

Tell	me	a	little	about	your	career	path.
I	 studied	 math	 and	 computer	 science	 in	 Berlin.	 My	 first	 job	 was	 with	 IBM.
Originally	I	was	an	engineer.	At	the	time,	there	weren’t	any	product	managers.

I	found	that	what	I	liked	most	in	my	job	was	to	go	out	and	explain	the	product	in
non-technical	terms	to	our	customers,	and	then	come	back	and	explain	who	our
customers	are	to	the	rest	of	the	team.	I’d	talk	to	users	and	potential	users	and	try
to	find	out	what	 they	wanted.	Usually	 the	first	stage	was	just	 listening	to	 them
complain.

It	took	me	a	long	time	to	figure	out	what	product	management	was.	I	was	happy
with	 what	 I	 did,	 but	 from	 my	 manager’s	 point	 of	 view,	 I	 was	 an	 under-
performing	 engineer.	 At	 my	 performance	 reviews,	 he’d	 say,	 “In	 terms	 of
engineering	 you	 aren’t	 one	 of	 the	 top	 performers.	But	whatever	 you’re	 doing,
keep	doing	 it.”	So	 I	kept	doing	 it,	and	 it	was	a	big	 relief	 for	me	when	I	heard
about	the	product	manager	role,	since	I	realized	that	was	what	I	was!

I	was	a	PM	for	SAP	for	several	years,	and	then	switched	to	the	business	side	of
things	 for	 a	bit.	 I	worked	with	 the	CEO	on	company	 strategy	 for	 a	 few	years.
That	was	a	great	learning	experience,	but	I	missed	building	products.

So	I	went	back	to	product	and	design.	After	11	years,	I	had	learned	so	much	and
the	company	had	grown	so	much	that	my	interests	shifted	toward	the	web	and	to
much	smaller	companies.

I	 left	 for	 Google	 and	 worked	 there	 for	 five	 years.	 I	 worked	 on
internationalization	and	gave	them	the	40	languages	initiative,	and	then	worked
on	iGoogle	on	Marissa	Mayer’s	team.	When	I	left,	I	left	on	a	high	note.

I	joined	Mozilla	for	a	year.	I	was	fascinated	by	Mozilla	and	nonprofits.	It	turns
out	I	loved	the	idea	but	not	the	execution,	so	then	I	moved	on	to	Twitter,	where	I
stayed	for	one	and	a	half	years	and	worked	on	several	products.

I’ve	been	at	Airbnb	for	7	months.	 I’m	the	head	of	 International.	My	goal	 is	 to
make	us	successful	in	192	countries.	The	role	includes	not	only	localization	and

translation,	but	also	includes	the	strategy	in	different	countries.	I	get	to	not	just
build	one	product,	but	to	work	with	the	other	PMs	to	build	the	best	product	in	all
countries.

What	were	some	of	the	key	breakthrough	moments	in
your	career?
There	were	many	moments	that	helped	me	become	what	I	am	today.	One	of	the
big	things	was	talking	to	a	lot	of	awesome	role	model	product	managers.	When	I
joined	Google,	I	talked	to	Sundar	Pichai	and	a	lot	of	people	who	had	been	there
for	a	while	and	whom	I	really	respected	for	being	awesome	product	managers.
Not	to	copy	their	style,	but	to	learn	what	worked	and	didn’t	work.	I	learned	so
much	from	them.

Now	 I’m	 on	 the	 other	 side	 of	 those	 requests,	 and	 I	 meet	 with	 everyone	 who
contacts	me.	I	strongly	recommend	to	everyone	who	wants	to	become	a	PM	that
they	build	a	network.	You	learn	to	write	by	reading.	Look	at	good	products,	see
how	they	build	products	users	love,	then	contact	the	people	who	work	there	and
ask	them	how	they	did	it.

Another	big	moment	was	when	I	worked	on	design	services,	such	as	an	internal
IDEO	at	SAP.	The	 team	was	 awesome.	 I	 participated	 and	 ran	workshops	with
IDEO.	It	just	blew	my	mind;	in	only	one	day	of	a	workshop,	I	learned	empathy
with	 your	 user	 and	 rapid	 prototyping.	 They	 open	 your	 eyes	 for	 unmet	 user
desires	and	teach	you	how	to	observe	without	jumping	to	conclusions.

You	 get	 thrown	 into	 a	 new	 problem	 like	 redesign	 a	 bookstore.	 With	 little
guidance,	you	go	out	and	talk	to	users,	take	pictures,	come	back	and	synthesize,
prototype,	and	bring	your	prototype	back	to	user	to	see	how	it	works.

Young	 PMs	 can	 do	 that	 on	 their	 own.	 If	 you	 live	 in	 Mountain	 View,	 take	 a
potential	 task,	 such	 as	 how	 to	 make	 the	 Caltrain	 ticket	 machine	 a	 delightful
experience,	 and	 go	 through	 those	 steps.	Observe,	 take	 pictures,	 talk	 to	 people
using	the	machine,	and	find	out	who	they	are.

Figure	out	your	personas	-	maybe	they’re	commuters	or	tourists.	Then	synthesize
the	 problems.	 Maybe	 there’s	 glare	 on	 the	 display.	 You	 synthesize,	 prioritize,
simplify	down	to	themes,	and	then	build	prototypes.	You	can	even	make	paper	or
cardboard	prototypes.	Then	go	back	to	those	users	and	ask	people	if	they	want	to

try	your	prototype.	You	can	do	this	alone.	It’s	better	with	other	people,	but	you
can	do	it	yourself.	One	guy	I	know	started	a	blog	and	did	this	with	lots	of	things;
it	was	addictive	for	him.

Now	I’m	on	advisory	boards	for	startups.	I	try	to	teach	them	to	understand	who
their	users	are	and	why	would	those	users	would	care	about	the	product.	I	see	so
many	pretty	solutions	in	search	of	a	problem.	I	talked	to	a	company	who	wanted
product	 advice.	 I	 asked	 them	 who	 their	 users	 were,	 and	 they	 said	 wedding
planners,	bakers,	personal	trainers,	the	flower	shop	around	the	corner.	So	then	I
asked	how	many	of	those	customers	they’d	actually	talked	to	and	they	said	zero.
So	I	told	them	the	first	thing	they	needed	to	do	was	go	out	and	talk	to	their	users
and	find	out	who	their	users	are.

What	 advice	 would	 you	 give	 to	 a	 PM	who	 wants	 to
advance	in	their	career?
Know	what	you’re	passionate	for	and	passionate	about.

There	are	some	pretty	good	 tools	you	can	use	 to	 learn	who	your	users	are	and
create	 hypotheses	 about	 their	 desires	 and	 come	 up	 with	 ideas	 about	 what	 the
solutions	 might	 be.	 There’s	 a	 methodology	 of	 storyboarding	 and	 personas
coming	from	user	research	that	you	can	learn.

It	helps	 to	have	a	CS	degree	or	be	 technical.	You	need	 to	work	with	engineers
and	earn	their	trust.	If	they	have	to	dumb	it	down	for	you,	you’re	lost.

If	I	develop	a	new	line	of	cars,	I	don’t	have	to	be	an	engineer	to	build	the	car,	but
it	would	help	 if	 in	my	spare	 time	I	can	at	 least	change	a	 tire	and	know	what’s
going	on	under	the	hood,	and	ideally	I	can	name	all	the	parts	and	get	my	hands
dirty	to	change	some	of	them.

It’s	 important	 to	 know	 what’s	 under	 the	 hood	 and	 have	 an	 interest	 in	 it.	 If
someone	 doesn’t	 have	 any	 interest	 in	 the	 technical	 side,	 then	 maybe	 the
technology	 field	 isn’t	 for	 them.	 How	 would	 you	 feel	 about	 teaching	 yourself
some	 Java	 by	 buying	 a	 book,	 installing	 eclipse,	 and	 building	 a	 simple	mobile
app?	If	 that	would	excite	you,	 that’s	great.	If	you	think,	“Do	I	really	have	to?”
you’re	probably	in	the	wrong	industry.

It’s	good	to	know	as	much	as	possible	about	design	and	user	research.	A	good
PM	 doesn’t	 only	 create	 delightful	 experiences	 but	 knows	 how	 to	 measure

success	 and	 define	 success.	 User-focused,	 metrics-supported	 decisions	 are
always	the	best.

Q	&	A:	Johanna	Wright,	VP	at	Google

Tell	me	a	little	about	your	career	path
I	 was	 a	 math	 major	 and	 then	 got	 my	 first	 job	 as	 a	 programmer	 at	 a	 small
software	company	supporting	the	financial	services	industry.	While	I	was	there
each	of	the	new	grads	had	one	on	one	meetings	with	the	company	execs.	When	I
met	 the	Product	Manager,	Tom,	 I	was	blown	away	 that	he	actually	knew	what
the	 company	 should	 build.	 I	 dreamed	 that	 one	 day	 I	 would	 have	 the	 skills	 to
know	 what	 we	 should	 build.	 That’s	 when	 I	 decided	 I	 wanted	 to	 become	 a
Product	Manager.

I	 tried	 to	 become	 a	 PM	 in	 all	 kinds	 of	 backwards	way—first	 I	 became	 a	QA
[Quality	Assurance]	manager,	 then	 I	 became	 an	 engineer	 again.	Then,	 another
startup	doing	an	Internet	platform	was	trying	to	recruit	me.	They	wanted	me	to
join	 as	 a	 QA	 manager,	 but	 I	 said	 I’d	 only	 come	 as	 a	 product	 manager	 or	 a
programmer.	And	that’s	how	I	became	a	PM.

When	 the	 internet	 bubble	 collapsed	 that	 company	went	 out	 of	 business	 and	 I
moved	to	California.	My	husband	and	I	decided	to	bicycle	from	Brooklyn	to	Los
Angeles.	I	didn’t	think	I’d	be	able	to	get	another	PM	job	when	the	economy	was
such	a	disaster,	but	I	thought	I	maybe	I	could	get	a	project	management	contract.
I	was	lucky	enough	to	meet	a	friend	of	a	friend	while	hiking	and	she	hired	me.
Six	months	later	I	started	business	school	at	UCLA.

For	me,	business	school	lent	a	lot	of	credibility.	My	startup	was	pretty	unknown,
my	undergraduate	school,	Barnard,	wasn’t	well	known	for	CS,	and	my	networks
weren’t	 strong.	 Business	 school	 wouldn’t	 be	 right	 for	 everyone—people	 who
went	to	Stanford,	or	had	prestigious	jobs	at	other	companies	would	not	have	as
much	of	 a	 credibility	gap	 and	may	not	need	business	 school	 as	much.	But	 for
me,	given	the	job	market	at	the	time,	it	made	sense.

After	business	school	I	went	to	Google	as	a	product	manager.	I	had	to	hustle	to
get	 the	 job.	 There	 was	 a	 while	 where	 I	 had	 a	 weekly	 recurring	 entry	 in	 my
calendar	to	“call	Hilary”,	a	woman	from	Barnard’s	alumni	database	who	worked
at	Google.	Eventually,	once	I	got	some	other	job	offers,	Hilary	was	comfortable
enough	to	pass	me	along	to	a	recruiter.

At	Google	I’ve	worked	on	a	lot	of	teams.	I	started	on	Ads	UI	and	then	moved	to

the	 Search	 team	 where	 I	 launched	 Universal	 Search,	 Google	 Instant,	 and
Knowledge	Graph.	After	 that	 I	was	 ready	 for	 a	 new	 challenge,	 so	 I	moved	 to
Android	where	I’m	now	VP	of	Search	and	Assist

What	were	some	of	the	key	breakthrough	moments	in
your	career?
My	 first	 PM	 job	 was	 a	 real	 breakthrough.	 I	 worked	 at	 a	 small	 company	 and
could	really	define	what	a	product	manager	was	since	I	was	 the	only	one.	The
way	I	got	that	job	was	interesting.	Back	when	I	was	a	QA	manager	I	had	brunch
with	a	couple	of	the	founders	of	the	company.	I	was	really	excited	about	my	job
and	had	a	whole	philosophy	about	how	teams	should	be	set	up	and	run.	Just	from
that	brunch	and	seeing	how	passionate	I	was	they	wanted	to	hire	me.

The	defining	career	moment	for	me	at	Google	was	working	on	Universal	Search
and	launching	it.	It	was	an	important	project	for	the	company	and	was	known	as
a	 project	 that	 people	 hadn’t	 succeeded	 at	 before.	 Once	 I	 launched	 Universal
Search	I	was	promoted	to	Director.

Being	a	QA	manager	was	a	grounding	experience	in	my	early	career.	It	gave	me
perspective	 on	 how	 to	 use	 a	 product,	 know	 your	 users,	 have	 empathy	 for
customers.	My	experience	as	a	programmer	was	also	really	helpful	to	understand
what	programmers	go	through.	Working	anywhere	in	the	software	development
process	is	a	big	help	to	being	a	PM.

What	 advice	 do	 you	 have	 for	 people	 who	 want	 to
become	PMs	and	advance	in	their	careers?
Do	 something	 fun.	 Do	 something	 important.	 I	 don’t	 think	 there	 is	 a	 single
answer	to	career	advancement.	I	have	always	tried	to	find	jobs	that	will	be	fun
and	 keep	 my	 brain	 engaged	 all	 day	 long.	 The	 biggest	 career	 leverage	 I	 have
found	is	when	I	do	something	important	for	my	company.

Even	more	advice.

Communicate	 what	 you	 are	 doing.	 In	 a	 big	 company	 you	 really	 need	 people
above	you	who	will	allocate	resources	and	get	conflicting	projects	to	be	on	your
side,	so	messaging	what	you	are	achieving	becomes	 important.	With	Universal
Search,	a	baby	step	was	the	very	first	user	study.	We	had	to	have	a	demo	ready

for	the	user	study,	and	that	was	really	important	for	the	effort.	People	could	see
the	product	working	and	this	helped	communicate	what	we	were	trying	to	do.

Don’t	give	up.	When	 job	hunting	 it’s	 important	 to	be	willing	 to	 talk	 to	 lots	of
people	and	not	worry	about	rejection.	It	wasn’t	that	easy	to	get	my	job	at	Google.
I	was	the	last	person	in	my	MBA	class	to	get	an	internship.	Take	heart,	all	these
things	can	turn	around.

Find	 a	 boss	who	 believes	 in	 you.	At	Google	 It	was	 really	 important	 to	me	 to
have	a	manager	who	believed	 in	me.	 It	was	great	 to	have	Marissa	Mayer	as	a
manager	 -	 she	 took	 chances	 on	me.	 She	 gave	me	 a	 chance	 to	manage	 people
when	 I	hadn’t	before.	When	 I	was	9	months	pregnant,	 she	 suggested	 I	present
our	 search	 strategy	 to	our	 executives.	This	was	 really	 important	 for	my	career
because	it	had	me	in	peoples’	minds	as	the	person	planning	the	search	strategy.
That’s	all	thanks	to	Marissa.

What	does	it	take	to	be	a	great	PM?
The	great	PMs	I’ve	worked	with	are	very	different	from	each	other.	That’s	why	it
is	an	awesome	job.	You	see	people	who	are	full	of	energy	and	able	to	motivate
people	 through	 their	 ideas,	 people	 rooted	 in	 technical	 capabilities,	 or	 people
people	who	get	things	done	through	relationships.

That	said,	all	great	PMs	are	goal	oriented.	They’re	able	to	get	things	done,	focus,
prioritize.	One	mistake	 junior	PMs	at	Google	 (and	probably	 at	 other	other	big
companies	too)	make	is	to	go	to	too	many	meetings	and	think	their	work	is	done.
A	good	PM	defines	what	 it	 takes	 to	 achieve	 her	 goals.	Less	 effective	PMs	 let
their	schedules	sway	how	they	get	things	done	and	it	gets	in	their	way.

Great	 PMs	 care	 about	 their	 users.	 They	 use	 their	 product.	 They	 do	 not	 finish
when	the	spec	is	done	but	make	sure	to	to	use	a	working	version	inside	and	out.
They	have	great	follow	through	to	get	things	done.

Q	&	A:	Lisa	Kostova	Ogata,	VP	of	Product	at
Bright.com

Tell	me	a	little	about	your	career	path.
I	 came	 to	 product	 management	 from	 a	 somewhat	 unorthodox	 background.	 I
earned	a	dual	degree	in	international	relations	and	finance	from	the	University	of
Pennsylvania	/	Wharton	and	upon	graduation	went	to	work	on	Wall	Street	for	a
few	investment	management	firms.

I	 spent	 my	 first	 five	 years	 in	 private	 equity	 and	 venture	 capital	 investing,
developing	 a	 skillset	 that	 in	 retrospect	 was	 very	 useful	 in	 my	 product
management	career:	evaluating	products	and	teams,	figuring	out	which	ones	 to
invest	 time	and	resources	in,	and	calculating	return	on	investment.	It	was	great
training	for	a	critical	mindset	and	for	having	to	constantly	think	about	tradeoffs
and	 opportunity	 costs.	 It	 was	 also	 a	 good	 practice	 ground	 for	 communicating
hypotheses	clearly	and	succinctly	to	different	audiences.

In	2007,	 I	went	 to	Harvard	Business	School	 (HBS),	where	I	evolved	my	goals
for	what	 I	wanted	 to	do	next	with	my	career.	 I	had	always	known	 that	while	 I
found	investing	very	intellectually	stimulating,	I	was	really	itching	to	be	part	of
the	creation	of	products	and	services—to	be	hands	on.

I	also	got	engaged	during	the	first	year	of	business	school.	Since	my	fiancé	was
deeply	rooted	in	the	Bay	Area,	I	knew	I	would	be	coming	back	to	San	Francisco
to	 pursue	 my	 career.	 The	 explosion	 of	 internet	 companies	 such	 as	 Facebook,
Twitter	and	LinkedIn	really	captivated	me.	I	spent	a	 lot	of	 time	studying	them,
working	 with	 some	 of	 them	 on	 field	 projects	 and	 in	 general,	 getting	 excited
about	the	space.

Between	my	first	and	second	year	at	HBS,	I	interned	at	Google.	Now,	Google	is
one	 of	 those	 companies	 that	 have	 strict	 educational	 requirements	 for	 their
product	manager	role	and	they	require	a	CS	degree.	However,	I	was	fortunate	to
land	an	 internship	 in	 their	online	sales	and	operations	group.	The	position	was
more	closely	related	to	a	project	manager	role	but	I	was	grateful	for	 it;	 it	gave
me	great	exposure	to	the	company	and	the	space,	and	it	got	my	foot	in	the	door
working	in	operations	in	tech.

Due	 to	 the	 economic	 collapse	 at	 the	 end	 of	 the	 summer	 in	 2008,	 none	 of	 the
MBA	interns	at	Google	got	offers.	This	was	a	blessing	in	disguise	for	a	lot	of	us.
It	allowed	us	to	be	more	nimble	and	creative	when	pursing	career	opportunities.
Some	of	my	classmates	 started	 their	own	companies;	others	graduated	without
an	offer.

I	was	part	of	the	latter	group.	I	figured	I’d	move	out	to	the	Bay	Area	and	pound
the	 pavement	 looking	 for	 opportunities	 with	 startups	 and	 growing	 companies
that	didn’t	recruit	on	MBA	campuses	and	needed	immediate	help.

Looking	for	a	job	was	a	roller	coaster	since	I	didn’t	fit	the	traditional	background
of	a	lot	of	product	management	roles	at	established	companies	–	I	had	worked	in
tech	for	only	a	few	months	and	people	in	large	organizations	were	steering	me
towards	the	product	marketing	manager	role.

After	a	while,	a	few	of	my	contacts	pointed	me	towards	Zynga.	At	the	time,	the
company	 was	 exploding:	 Farmville	 had	 just	 launched,	 and	 the	 CEO,	 Mark
Pincus,	 was	 a	 big	 believer	 in	 developing	 product	 managers	 from	 business
backgrounds.	 The	 company	 needed	 immediate	 help	 and	 they	 were	 hiring	 on
potential,	 not	 experience.	 I	 jumped	 at	 the	 opportunity.	 After	 two	 days	 full	 of
grueling	interviews,	I	was	in.

What	 followed	were	 a	 few	months	 of	 late	 nights	 and	 “keep	 your	 head	 down”
type	of	work.	It	was	the	toughest	boot-camp	experience	imaginable	and	I	saw	a
lot	of	product	managers	quit	within	weeks.	But	 I	knew	 I	had	 to	 stick	 it	out	 to
learn	the	ropes,	and	I	did.

I	 spent	 almost	 four	 years	 at	 Zynga,	which	was	 packed	with	 the	 equivalent	 of
seven	to	eight	years	of	experience.	People	used	to	refer	to	a	year	at	Zynga	as	a
“dog	year”	since	we	were	shipping	new	games,	features	and	products	at	a	record
pace	I	haven’t	seen	anywhere	else.

Towards	the	end	of	my	time	at	Zynga,	I	was	running	a	team	of	a	dozen	of	people
and	 we	 had	 built	 some	 of	 Zynga’s	 most	 important	 cross-game	 channels	 and
products	 on	 Facebook.	 I	 loved	 my	 team	 and	 had	 developed	 a	 wonderful
relationship	with	them.	Some	of	them	were	even	teaching	me	coding	on	the	side.

As	much	as	I	enjoyed	my	team,	I	knew	that	time	was	running	out	for	our	games
on	Facebook	and	that	that	was	a	declining	market.	I	started	looking	around	for	a
new	 opportunity,	 which	 was	 when	 I	 realized	 what	 really	 matters	 in	 product

management	and	 in	any	career:	 relationships.	A	 lot	of	my	former	colleagues—
engineers	 I	had	worked	with	 in	 several	different	 teams	 in	Zynga—reached	out
and	 invited	me	 to	work	with	 them	 in	 their	 new	 ventures.	 I	 joined	 two	 of	my
former	colleagues	at	Bright,	heading	their	product	team.

I	 continue	 to	 learn	 a	great	deal	 at	Bright	 and	 to	work	with	 some	amazing	and
smart	 people.	 The	 company	 operates	 in	 the	 big	 data	 space	 in	 a	 huge	 market
(jobs),	 which	makes	 it	 exciting	 and	 presents	 a	 big	 opportunity.	 In	 addition	 to
several	consumer	products,	I’m	also	overseeing	an	enterprise	product,	which	is
very	different	 (especially	when	 it	comes	 to	 interfacing	with	 the	sales	 team	and
their	sales	cycle).

What	do	you	think	has	made	you	successful	thus	far?
An	open	mind,	a	deep	sense	of	curiosity,	and	constant	desire	to	learn.	You	can’t
be	afraid	of	going	into	an	area	that	you	don’t	know	much	about	–	you	have	to	be
comfortable	 getting	 up	 to	 speed	 quickly	 in	 new	 and	 potentially	 intimidating
areas.	 You	 need	 to	 be	 a	 consummate	 and	 life-long	 learner.	 The	 key	 is	 to	 ask
questions,	be	curious	and	learn	from	your	team.

I	 always	 treat	 engineers,	 designers	 and	other	 team	members	 as	 equal	 partners,
and	they	explain	and	teach	me	about	their	areas	of	expertise.	My	team	showed
me	that	coding	was	not	scary,	but	interesting.	It’s	built	on	logic	and	not	nearly	as
complicated	and	mathematical	as	my	preconceptions	had	made	it	out	to	be.

A	sense	of	curiosity	and	passion	for	the	product	is	very	important	as	well,	as	is
developing	empathy	for	the	customer	–	if	the	PM	doesn’t	care	about	the	product,
it	will	show	in	the	quality	of	product	in	many	different	ways.

As	a	product	manager,	you	also	have	to	be	able	 to	straddle	multiple	 levels	and
audiences.	It’s	like	speaking	different	languages	(human	or	computer	ones)	and
being	able	to	relate	the	message	to	people	in	a	language	that	they’ll	understand.
You	need	 to	get	your	 team	 jazzed	and	excited	about	what	you’re	building,	get
them	 to	 contribute	 and	 own	 their	 ideas,	 and	 also	 relay	 and	 manage
communication	 up	 to	 management,	 sales,	 legal,	 etc.	 –	 departments	 that	 care
about	different	aspects	of	the	product.

You	 need	 to	 genuinely	 like	 being	 around	 people	 and	 working	 with	 people,
bringing	 their	 best	 energy	 forward.	 You	 need	 to	 be	 the	 type	 of	 person	 who
thrives	 on	 being	 in	 the	 thick	 of	 it,	 solving	 problems	 on	 the	 fly,	 and	 making

decisions	quickly	without	fear.	You	can’t	be	the	quiet	person	in	the	corner	who
wants	to	be	left	alone	all	day.

What	this	also	means	is	that	as	a	PM,	you	have	to	recognize	that	you	will	never
be	the	best	marketer,	or	engineer,	or	sales	person.	You	have	to	be	proficient	and
versed	 enough	 in	 a	 lot	 of	 these	 areas	 and	 have	 a	 good	 sense	 of	 how	 they	 fit
together	 in	 the	 product.	 It’s	what	 I	 imagine	 being	 a	 conductor	 of	 an	 orchestra
feels	like.

How	valuable	is	an	MBA	for	product	managers?
Getting	an	MBA	just	for	the	sake	of	getting	an	MBA	is	not	worthwhile	in	tech,	at
least	 not	 in	 Silicon	 Valley.	 There	 are	 certainly	 certain	 industries	 where	 it’s	 a
prerequisite	–management	consulting	for	example—but	tech	is	not	one	of	them.

Having	 said	 that,	 an	 MBA	 from	 a	 top	 school	 is	 extremely	 valuable	 for	 the
network;	a	lot	of	my	classmates	participate	in	the	business	and	product	creation
process	as	founders	of	companies,	venture	capitalists	and	other	key	players.	So
I’m	organically	plugged	into	a	very	powerful	network	that	will	keep	creating	and
compounding	opportunities	for	my	career	whatever	I	decide	to	do	next.

The	 other	 thing	 I	 loved	 about	 the	 MBA	 is	 the	 experience	 of	 spending	 two
amazing	 jam-packed	 years	 learning	 and	 getting	 exposed	 to	 a	 variety	 of
companies,	industries,	and	people	in	a	very	intellectually	stimulating	and	mind-
opening	environment.	I	love	learning	and	I	experienced	one	of	my	most	intense
personal	growth	phases	at	HBS.	But	I	don’t	advertise	my	MBA	or	Harvard	in	my
day-to-day	 job	 and	 interactions.	 Where	 I	 work	 and	 with	 what	 I	 do,	 all	 that
matters	 is	your	 ability	 to	 contribute	 to	 the	 success	of	 a	 company.	Some	of	my
smartest	 colleagues	 haven’t	 even	 gone	 to	 college,	 so	 educational	 credentials
don’t	mean	much.

An	MBA	might	well	 be	 a	 good	 path	 for	 you,	 but	 you	 need	 to	 think	 carefully
about	what	you’re	looking	to	get	out	of	it	and	why	you	would	invest	the	time	and
money	in	the	experience.

What	 advice	 do	 you	 have	 for	 people	 who	 want	 to
become	PMs	and	advance	in	their	careers?
Be	curious	and	strive	to	learn	something	new	every	day.	Learn	from	the	people
around	you	–	the	marketers,	from	engineers,	from	sales	people,	the	QA	guys,	etc.

Without	curiosity	and	an	open	mind,	you’ll	get	defensive	and	bitter,	and	that’s	a
recipe	for	hating	your	life	as	a	PM.

Don’t	chase	a	brand.	Don’t	 just	go	somewhere	just	because	it’s	“the”	company
everyone’s	talking	about.	It’s	funny	–	in	the	early	days	at	Zynga,	a	lot	of	people
who	would	 apply	 to	 be	 product	managers	were	 the	 hungry,	 scrappy	 kind	who
had	 some	 sort	 of	 handicap.	Later	 on,	 as	Zynga	 became	 of	 the	 hottest	 pre-IPO
companies	in	2010	and	2011,	there	were	a	lot	of	people	who	wanted	to	apply	to
be	 a	 product	 manager	 because	 they	 had	 heard	 the	 company	 was	 hot	 and	 that
recruiters	liked	product	managers	with	Zynga	experience.

Instead,	 think	 about	 what	 makes	 you	 happy.	What	 is	 your	 style	 –	 analytical,
technical,	 design-focused,	 creative?	 How	 does	 it	 fit	 with	 the	 culture	 of	 the
organization?	 Does	 the	 product	 of	 the	 company	 resonate	 with	 you?	 Are	 you
excited	 to	 serve	 the	 types	 of	 customers	 the	 company	 attracts?	 Do	 you	 see
yourself	working	 long	days	with	 the	people	you	meet	 during	your	 interviews?
Are	the	problems	they	are	solving	exciting	to	you?

Be	 open	 minded.	 Product	 management	 is	 not	 an	 obvious	 and	 strictly	 defined
role.	A	 lot	 of	 companies	 go	 by	 for	 a	 long	 time	without	 product	managers	 and
others	don’t	have	that	role	at	all.	You	don’t	have	a	defined	set	of	buttons	to	push
and	 levers	 to	 pull.	 You	 have	 to	 be	 excited,	 driven,	 self-motivated,	 and
compassionate.	You	have	to	be	able	 to	pitch	in	and	help	where	needed	–	that’s
how	you	carve	out	your	role	as	PM	in	a	startup.

Finally,	 be	 able	 to	 recognize	 an	 opportunity	 when	 it	 shows	 up.	 It	 may	 be
different	than	what	you	expect,	but	if	it	gets	you	in	the	door	and	one	step	closer
to	 creating	 a	 product,	 seize	 it.	 Be	 scrappy	 and	 trust	 that	 it	 will	 all	 eventually
work	out.

Behind	the	Interview	Scenes
Chapter	6

Google
A	quick	search	online	will	reveal	a	multitude	of	rumors	about	Google’s	interview
process	 and	 culture.	 Some	 will	 recount	 “horror”	 stories	 about	 Google
interviewers	 trying	 to	 intimidate	 the	 candidate,	 and	 some	 will	 discuss	 the
ridiculous	questions	that	someone’s	friend’s	cousin’s	college	roommate	allegedly
was	asked.

The	reality	is	so	much	tamer	than	that.

Google’s	 interview	process	 is	much	 like	every	other	company’s.	 It	begins	with
two	phone	interviews	that	may	cover	technical,	cultural	fit,	strategic,	analytical,
and	product	design	questions	(though	perhaps	not	all	of	these).

If	 you	 pass	 those	 interviews,	 you	 will	 be	 brought	 onsite	 for	 a	 full	 day	 of
interviews.	 You	 may	 have	 an	 interview	 over	 lunch.	 If	 so,	 this	 interviewer
generally	doesn’t	submit	 feedback	for	you.	She’s	 just	 there	 to	sit	with	you	and
field	questions.

Your	other	interviewers	will	be	assigned	specific	roles.	Some	will	evaluate	your
technical	skills,	others	your	product	skills,	and	still	others	your	analytical	skills.

Each	interviewer	will	be	evaluating	you	separately.	Google	is	pretty	strict	about
interviewers	not	sharing	feedback	on	you	with	other	interviewers	until	everyone
has	 submitted	 their	 feedback.	This	means	you	don’t	 need	 to	worry	 about	 poor
performance	 in	 your	 early	 interviews	 biasing	 your	 later	 interviewers.	 It	 also
means	getting	“easy”	or	“hard”	questions	later	on	in	the	interview	means	nothing
about	your	performance.

After	the	interview,	associate	product	managers	(APMs)	will	be	given	an	essay
to	write.	The	essay	often	focuses	on	an	area	of	business	strategy.	Be	concise	and
to	 the	point;	 beautiful,	 descriptive	prose	 is	 not	 good	business	writing.	And,	 of
course,	be	sure	to	check	for	any	spelling	or	grammatical	errors.

PM	 candidates	 will	 be	 interviewing	 for	 a	 particular	 team,	 but	 many	 of	 the
interviewers	will	not	be	from	that	team.	APM	candidates	do	not	interview	for	a
specific	team	since	it’s	a	rotational	program.

How	Decisions	Get	Made
Interviewers	do	not	decide	who	gets	an	offer.	Rather,	each	interviewer	writes	up
feedback,	which	goes	to	a	hiring	committee	that	makes	the	decision.

You	will	be	evaluated	on	a	scale	of	1.0	to	4.0	by	each	interviewer.	This	number
alone	doesn’t	mean	much	though,	as	the	hiring	committee	will	take	into	account
whether	your	interviewer	was	a	“harsh	grader.”

Generally,	you	will	need	at	least	a	3.0	average	interview	score,	plus	one	strong
supporter.	Thus,	even	if	all	of	your	interviewers	recommend	hiring	you,	you	still
might	get	rejected	if	none	thought	you	were	outstanding.

The	hiring	committee	 is	 a	mix	of	peers	 (other	PMs),	managers,	 and	 recruiters.
Your	 interviewers	 will	 typically	 not	 be	 on	 the	 hiring	 committee.	 If	 this	 does
happen,	it’s	purely	by	coincidence.

The	hiring	 committee	makes	 a	hire	 /	 no-hire	 recommendation	 (which	 is	 rarely
overturned	 in	 later	 stages).	 If	 you	 get	 a	 hire	 recommendation,	 your	 packet	 is
passed	 to	 a	 compensation	 committee	 and	 then	 to	 an	 executive	 committee	 to
finalize	your	offer.

The	number	of	stages	 in	 the	Google	hiring	process	 is	one	reason	decisions	can
take	several	weeks.

Special	Focuses
Google	is	not	as	into	behavioral	questions	as	other	companies	are.	In	fact,	many
Google	interviewers	won’t	have	thoroughly	read	your	resume	beforehand;	they
prefer	to	test	your	skills	more	directly	in	the	interview.

Try	 to	 mix	 a	 few	 key	 points	 into	 each	 interview	 (where	 appropriate)	 since
interviewers	 might	 not	 probe	 as	 deeply	 into	 your	 background.	 That	 awesome
side	project	you	did,	when	combined	with	strong	performance	on	an	analytical
question,	could	be	what	you	need	to	get	a	“strong	hire”	recommendation.

Additionally,	 remember	 the	 hiring	 committee	 does	 not	 speak	 with	 your
interviewers	 directly.	 They	 must	 make	 their	 decision	 entirely	 from	 the
interviewers’	writeups.	If	there’s	some	aspect	of	your	background	that	you	want
to	be	sure	 the	hiring	committee	knows,	mix	 that	 into	multiple	 interviews.	This
will	greatly	improve	the	odds	that	the	committee	knows	about	it.

Google	loves	questions	about	its	own	products:	Which	ones	do	you	love?	Which
ones	would	you	do	differently?	Be	prepared	to	talk	in	detail	about	some	Google
products.

Google	also	asks	a	lot	of	estimation	questions	and	technical	questions.	Be	sure	to
brush	 up	 on	 both	 your	 quantitative	 skills	 and	 your	 technical	 skills.	 Don’t	 be
surprised	if	you’re	asked	to	write	a	bit	of	code	on	the	whiteboard.

Estimation	 questions	will	 often	 involve	 some	 aspects	 of	Google	 products,	 and
one	of	 the	big	areas	 there	 is	 advertising.	Pay	 special	 attention	 to	 the	questions
related	to	advertising	in	the	case	study	chapter.

Associate	Product	Managers
Candidates	with	minimal	 experience	 (less	 than	 two	 years)	 generally	 interview
for	an	associate	product	manager	role.	This	is	a	rotational	program,	so	team	fit	is
obviously	less	important.	The	interview	process	is	basically	the	same	as	for	the
product	manager	role.

Microsoft
Microsoft’s	 process	 is	 perhaps	 the	 simplest	 and	 most	 straightforward	 of	 any
company.	In	fact,	the	interview	processes	of	many	other	companies	appear	to	be
a	derivative	of	the	Microsoft	process:	swap	out	the	hiring	committee	for	a	hiring
managers,	and	voila.

At	Microsoft,	candidates	usually	start	with	one	or	two	phone	screens.	If	you’re	a
college	candidate,	this	interview	might	take	place	on	your	college	campus.

Sometimes	 a	 recruiter	 does	 an	 initial	 screen.	 That’s	 no	 reason	 to	 drop	 your
guard;	just	because	it’s	by	a	recruiter	doesn’t	mean	it	can’t	be	challenging.

Candidates	with	work	experience	often	have	a	technical	screen	as	well.

After	the	phone	screens,	candidates	are	flown	out	to	Redmond	for	a	full	day	of
interviews.	 Candidates	 will	 generally	 interview	 with	 a	 specific	 team.	 The
requirements	might	change	from	team	to	team,	so	a	candidate	who	is	a	great	fit
for	one	team	might	be	a	lousy	fit	for	another.

If	you	interview	with	the	hiring	manager	or	a	more	senior	person	at	 the	end	of
the	 day,	 this	 is	 a	 good	 sign.	 It	 often	 means	 you	 have	 gotten	 a	 “hire”	 from	 a
technical	 point	 of	 view,	 and	 they	 often	 are	 just	 testing	 cultural	 fit	 or	 fit	 with
Microsoft	as	a	whole.	It	may	also	be	that	they	are	teasing	out	some	final	points
people	 were	 on	 the	 fence	 about.	 This	 interview	 is	 called	 the	 “as	 app”	 (“as
appropriate”)	interview.

How	Decisions	Get	Made
After	your	 interview,	 the	 interviewers	 for	a	 team	discuss	your	performance	via
email	 or	 an	 in-person	 meeting.	 They	 make	 a	 decision	 and	 pass	 it	 back	 to	 a
recruiter	who	will	get	together	an	offer	packet,	if	necessary.

In	 some	cases,	 candidates	discover	 they	will	 receive	an	offer	before	 they	have
even	left	Microsoft’s	campus.	This	might	seem	shocking,	but	remember:	all	that
interviewers	 need	 to	 do	 is	 provide	 their	 feedback	 and	 potentially	 discuss	 it
quickly.	If	all	your	interviewers	happen	to	be	available	that	day	to	chat,	decisions
can	happen	very	quickly.

If	this	doesn’t	happen	to	you	though,	don’t	be	disheartened.	Being	able	to	make
rapid	decisions	has	 to	do	with	your	 interviewers’	 schedules	and	 the	number	of
other	candidates	in	the	pipeline,	not	your	performance.

Special	Focuses
Microsoft	in	particular	likes	behavioral	questions	and	product	design	questions.

In	 product	 design	 questions,	 pay	 attention	 to	 the	 details	 and	 be	 sure	 to	 ask
probing	 questions.	Microsoft	 interviewers	 often	 enjoy	 testing	 how	 you	 handle
ambiguity.	They	might,	 for	example,	 ask	you	 to	design	a	pen	and	not	mention
that	it’s	a	pen	for	astronauts.	They	want	to	see	that	you	ask	a	lot	of	questions	to
understand	the	customer	before	running	down	some	path.

Extra	Goodies
Now	 that	we’ve	 generalized	 about	what	Microsoft	 does,	we	 should	 also	 leave
you	with	this	advice:	be	careful	about	generalizations	at	Microsoft,	particularly
with	 respect	 to	 hiring.	What	 your	 buddy	 experienced	 at	Microsoft	might	 have
little	to	do	with	what	you’ll	experience.

Microsoft	teams	hire	mostly	independently.	One	team	might	want	deep	technical
skills	and	therefore	demand	that	you	write	some	pseudocode,	while	other	teams
might	want	to	test	your	design	skills.	It’s	all	over	the	map.

Facebook
Facebook	 was	 built	 on	 a	 hacker	 culture,	 and	 this	 shows	 in	 their	 culture.
Facebook	wants	PMs	who	show	this	entrepreneurial	drive.

Like	other	companies,	PM	candidates	start	off	with	one	or	two	phone	interviews.
The	phone	 interviews	often	cover	behavioral	questions,	and	may	also	ask	why
you	 are	 passionate	 about	 Facebook.	 The	 best	 answers	 may	 include	 anecdotes
about	real-world	experiences	with	Facebook	or	a	desire	to	have	a	big	impact	and
work	with	smart	people.

If	 you	 do	well	 on	 the	 phone	 interviews,	 you’ll	 be	 brought	 in	 for	 four	 to	 five
onsite	interviews.	Each	interviewer	wears	a	specific	“hat”:
	

Technical	 and	 Logical:	 You	 will	 be	 asked	 some	 quantitative	 questions,
especially	 around	 metrics	 and	 implementing	 experiments.	 If	 you	 have	 a
technical	background,	you	might	also	be	asked	to	code	(although	Facebook
has	relaxed	this	requirement	more	recently).
Design:	These	will	 include	typical	product	design	questions.	Additionally,
if	you’ve	built	anything,	they	may	ask	to	see	it.	Think	about	what	services
and	apps	you	like	and	why	you	like	them.
Futurist:	These	include	questions	like,	“What	is	the	future	of	TV?”	Show
that	 you	 can	 reason	 about	 the	 future.	 You	 don’t	 just	 want	 to	 talk	 about
symptoms	of	 the	 future;	you	want	 to	 think	about	what	will	 fundamentally
change	to	get	that	way	and	what	effect	those	changes	will	have.	You	want
to	be	a	storyteller.
Guru:	 For	 experienced	 roles,	 they’ll	 ask	 about	 your	 core	 strengths.	They
want	to	check	your	sense	of	self	to	see	if	you	understand	what	you’re	good
at.

Entry-level	PMs	generally	get	hired	at	Facebook	as	generalists	rather	than	for	a
specific	team.

Experienced	 PMs	 mostly	 interview	 for	 a	 specific	 team,	 but	 Facebook	 still
expects	 these	 candidates	 to	 be	 generalists	 at	 heart.	 They	 will	 interview	 with
some	team	members	and	some	non-team	members.

How	Decisions	Get	Made
Facebook	 interviewers	 do	 not	 directly	 make	 offer	 decisions.	 Instead,
interviewers	 submit	written	 feedback	 to	 a	 hiring	 committee	which	 is	 a	mix	 of
peers,	managers,	and	recruiters.

You	will	 be	 evaluated	 in	 several	 categories	 during	 your	 interview.	 The	 hiring
committee	 will	 need	 to	 see	 strong	 performance	 on	 all	 of	 these	 categories	 to
extend	an	offer.

Special	Focuses
Typically,	Facebook	will	ask	PM	candidates	to	code.	They	understand	you	might
not	have	coded	in	a	long	time,	and	that	will	be	taken	into	account.	What	they’re
looking	 for	 here	 is	 someone	 who	 can	 think	 like	 a	 software	 engineer.	 Do	 you
understand,	more	or	less,	how	to	break	down	a	problem	into	steps?	Knowing	the
ins	and	outs	of	data	structures	and	algorithms	is	generally	not	expected,	but	you
should	know	some	basic	ones	like	hash	tables.

Apple
People	 joke	 that	Apple	 is	a	cult,	 and	perhaps	 there’s	 some	 truth	 to	 that.	Apple
does	really	value	culture	fit.	This	is	reflected	in	their	interview.

Apple	 hires	 for	 specific	 teams,	 not	 for	 the	 company	 as	 a	 whole.	 Apple’s
interview	process	kicks	off	with	two	phone	interviews.	After	that	point,	you	are
brought	onsite	for	in-person	interviews.

Some	teams	stick	with	the	standard	four	to	five	hour	(or	so)	long	interviews	with
members	of	 the	 team.	Other	 teams,	however,	may	give	you	as	many	as	 twelve
30-minute	interviews.	These	teams	apparently	value	culture	fit	so	much	that	they
want	you	to	meet	with	a	lot	of	people.

Your	 interviewers	 will	 come	 from	 a	 variety	 of	 roles:	 other	 PMs,	 designers,
engineering	 managers,	 an	 executive	 (e.g.,	 Junior	 Vice	 President	 of	 Product
Managers).	In	many	cases,	a	hiring	manager	will	interview	you	over	lunch,	but
they	might	also	ask	someone	to	fill	in	for	them	if	they’re	busy.

Part	way	 through	 the	 day,	 the	 interviewers	might	 check	 in	with	 each	 other	 to
ensure	they’re	following	the	right	process.

How	Decisions	Get	Made
After	your	interview,	the	hiring	manager	and	team	will	meet	together	to	make	a
decision.

Special	Focuses
Apple	 believes	 passionate	 employees	 make	 good	 employees,	 so	 they	 want
people	who	are	passionate	about	the	company	and	its	products.	Expect	a	lot	of
questions	about	why	you	want	to	work	at	Apple.	Have	a	good	pitch	ready.

Similarly,	you	should	know	Apple’s	products	well.	Be	prepared	to	describe	what
you	love	about	them	and	what	you	think	could	be	improved.

Amazon
Amazon	 candidates	 start	 off	 with	 two	 short	 phone	 screens.	 These	 are	 just	 30
minutes,	and	they	typically	don’t	drill	too	deeply	into	your	skills.	They’re	mainly
looking	to	understand	your	background	to	see	if	you	should	be	brought	onsite.

The	onsite	interviews	consist	of	four	to	six	in-person	interviews,	each	about	an
hour	long.

Interviewers	 will	 be	 looking	 to	 see	 how	 you	 match	 up	 against	 Amazon’s	 14
leadership	 principles	 (see:	 Amazon	 Leadership	 Principles),	 with	 each
interviewer	covering	 two	 to	 three	principles.	 If	an	 interviewer	doesn’t	 feel	 that
she	did	an	adequate	job	covering	one,	she	might	ask	another	interview	to	follow
up.

Of	 these	 14	 principles,	 an	 ability	 to	 get	 things	 done	 (“bias	 for	 action”	 and
“deliver	results”)	and	customer	obsession	are	particularly	important.

One	 of	 your	 interviewers	 will	 be	 the	 “bar	 raiser.”	 The	 bar	 raiser	 is	 a	 special
interviewer	from	another	team.	This	interviewer	is	tasked	with	“raising	the	bar”
and	ensuring	you	are	better	than	50	percent	of	Amazon	PMs.	He	is	often	easy	to
pick	out	from	your	interviewers:	he’s	the	one	brought	in	from	another	team.

The	 bar	 raiser	 is	 also	 often	 the	 person	 who	will	 challenge	 you	 the	most.	 For
example,	 he	 might	 be	 testing	 the	 “having	 backbone”	 value.	 Do	 you	 have	 a
position	that	you	can	back	up	while	respectfully	disagreeing?	Don’t	be	surprised
if	 the	 interviewer	 continues	 digging	 into	 something	 until	 you’ve	 given	 a
satisfactory	answer.

You	will	also	likely	interview	with	a	hiring	manager.

How	Decisions	Get	Made
After	your	 interview,	your	 interviewers	will	meet	 to	discuss	your	performance.
The	bar	raiser	is	responsible	for	the	interview	process	and	gets	veto	power.	The
hiring	manager	 also	 gets	 veto	 power;	 it’s	 her	 team,	 after	 all.	 This	means	 you
need	to	impress	both	the	hiring	manager	and	the	bar	raiser	(and	ideally	everyone
else,	too).

Special	Focuses
Amazon	tends	not	to	focus	too	much	on	technical	skills,	although	some	technical
aptitude	might	be	expected	in	more	technical	teams	like	Amazon	Web	Services.
What	the	company	cares	about	more	are	your	business	skills	and	background.

All	 of	 Amazon’s	 leadership	 principles	 are	 important,	 but	 the	 Customer
Obsession	 one	 is	 especially	 important.	When	 in	 doubt,	 do	what’s	 right	 for	 the
customer	(even	if	it	isn’t	the	right	“business”	decision).

Many	Amazon	questions	deal	with	pricing	specifically,	so	make	sure	you	think
about	 how	different	Amazon	products	 (e.g.,	Amazon	Prime)	 are	 priced.	Think
about	what	you	would	change.

Amazon	interviewers	like	to	dig	deep	into	your	resume.	That	line	you	have	about
how	your	 feature	boosted	efficiency	by	30	percent?	You’d	better	back	 that	up.
Be	prepared	to	justify	exactly	how	it	did	this	and	exactly	how	you	measure	this
impact.	Hand-waviness	won’t	cut	it.

Finally,	these	leadership	principles	are	not	a	joke.	If	you	pay	attention	and	know
the	leadership	principles	well,	you	might	recognize	which	one	an	interviewer	has
in	mind	with	a	particular	question.	You	can	 then	address	 it	directly.	Better	yet,
prepare	for	this;	review	your	resume	with	these	leadership	principles	in	mind.

Yahoo
Yahoo	recruits	for	both	the	product	manager	and	the	associate	product	manager
roles.	 The	 procedures	 for	 these	 interviews	 are	mostly	 similar,	 but	 they	 have	 a
few	differences.

Both	product	manager	and	associate	product	manager	candidates	 start	off	with
one	or	 two	phone	screens.	Successful	candidates	are	 then	brought	on	for	a	full
day	of	interviews.

In	 the	 onsite	 interviews,	 PM	 candidates	 interview	 with	 people	 from	 multiple
roles	and	levels.	They	should	have	at	least	three	interviews	with	fellow	PMs	of
the	same	level	or	higher,	plus	at	least	one	person	from	a	different	team.	One	of
your	interviewers	will	also	be	the	hiring	manager.

In	APM	interviews,	candidates	do	not	interview	with	the	specific	team.	After	an
offer	 is	made	and	accepted,	you	will	be	asked	your	 team	preferences.	You	will
then	be	notified	of	your	team	one	to	two	weeks	before	you	start.

How	Decisions	Get	Made
After	 your	 interviews,	 each	 interviewer	 submits	written	 feedback	 to	 the	 hiring
manager,	who	then	puts	 together	a	packet.	 If	 the	 team	is	feeling	positive	about
the	candidate,	the	packet	is	sent	to	the	hiring	committee	and	then	to	executives
for	final	approval.

For	APM	interviews,	offer	decisions	are	made	by	the	APM	steering	committee,
then	reviewed	and	finalized	by	the	executives.

In	 either	 case,	 Yahoo	 looks	 for	 people	 who	 are	 passionate,	 high	 energy,	 and
capable	of	getting	stuff	done	and	launching	products.

Special	Focuses
Yahoo	is	 looking	for	deeply	technical	PMs,	so	you	should	expect	 to	prove	that
you	have	a	solid	technical	foundation.	You	need	to	show	you	can	communicate
with	engineers,	but	it’s	unlikely	you’d	be	asked	to	code.

You	 should	 also	 expect	 product	 and	 analytical	 questions.	 Try	 to	 have	 a
framework	and	a	specific	point	of	view.

Twitter
Twitter’s	process	starts	with	a	hiring	manager	who	does	a	general	phone	screen
and	 then	 matches	 you	 with	 a	 specific	 team.	 You	 will	 do	 one	 or	 two	 phone
screens	before	being	brought	onsite.

In	the	onsite	interview,	you	may	go	through	as	many	as	seven	interviews	that	are
45	minutes	each.	Your	interviewers	will	be	a	mix	of	peers	(fellow	PMs)	as	well
as	people	whom	you	might	work	with,	such	as	engineering	managers,	tech	leads,
or	people	from	the	support	team.

How	Decisions	Get	Made
Each	 hiring	manager	 does	 things	 a	 bit	 differently.	However,	 Twitter	 generally
only	extends	an	offer	when	someone	is	a	“slam	dunk.”	They	want	someone	who
brings	something	new	to	the	team.

Special	Focuses
Twitter	 really	wants	 people	who	 have	 done	 their	 homework	 and	 love	 Twitter.
Applying	to	Twitter	just	for	its	brand	name	(as	oh-so-many	people	do)	won’t	cut
it.	Instead,	you	should	play	with	their	 technology	and	really	understand	it.	You
need	to	“get”	Twitter,	not	just	be	a	casual	user.	What	do	you	think	is	really	cool?
How	does	 it	work?	What	would	you	do	 if	 there	were	an	 issue?	You	should	be
obsessed	with	creating	a	great	experience	for	the	user.

Twitter	 also	 wants	 people	 who	 can	 handle	 change,	 since	 Twitter	 is	 growing
rapidly.	You	should	be	willing	to	wear	many	hats,	be	good	in	stressful	situations,
and	have	excellent	interpersonal	skills.	Behavioral	questions	are	very	important.

Twitter	PMs	will	generally	not	be	asked	coding	questions,	but	they	may	be	asked
how	 to	 technically	 design	 a	 product.	 You	 should	 understand	 concepts	 like
preloading	and	calculating	on	the	fly.

Dropbox
Drew	(Co-Founder	and	CEO)	 tells	each	new	hire	 that	 their	#1	 job	 is	 to	 recruit
other	talented	people.	Given	this,	it’s	not	surprising	that	almost	half	of	new	hires
are	 referrals	and	 the	recruiting	 team	is	very	active	 in	sourcing	candidates	 from
existing	PMs.

While	 the	 interview	process	 is	 still	 evolving,	 the	PM	candidate	 profile	 is	 very
well	 defined.	Dropbox	 is	 looking	 for	 people	with	 a	 technical	 background	 that
also	have	experience	as	a	startup	founder	or	who	have	demonstrated	substantial
accomplishments	as	a	PM	at	an	established	company.

Once	you’re	in	the	door,	you	go	through	two	phone	screens	with	other	PMs	who
ask	 typical	 PM	 questions	 about	 your	 favorite	 products	 and	 potential
improvements.

If	 you	 are	 invited	 onsite,	 you	 will	 typically	 face	 four	 interviews	 with	 PMs,
engineers,	 and	 product	 designers.	 These	 will	 include	 PMs	 who	 ask	 product
questions,	 engineers	who	go	 through	a	 technical	 screen,	 and	product	designers
who	may	ask	you	to	design	a	new	product	workflow	on	the	whiteboard.	Either
that	day	or	soon	after,	you’ll	also	interview	with	Arash	(Co-Founder	and	CTO)
who	asks	product	questions	related	to	Dropbox	and	also	screens	for	cultural	fit.

Depending	on	current	needs	and	candidate	backgrounds,	PMs	may	be	hired	for	a
specific	 team	or	 simply	as	a	generalist	 to	 jump	 into	a	 specific	 team	soon	after
starting.

How	Decisions	Get	Made
After	 the	 interviews,	 the	 interviewers	will	debrief	 together	 to	make	a	decision.
The	recruiter	is	in	touch	with	the	interviewers	throughout	the	day,	so	if	you	don’t
pass	 the	 initial	 interviews,	you	may	not	speak	with	Arash.	The	bar	 is	high	and
Dropbox	will	take	their	time	to	find	the	right	candidate.

Special	Focuses
One	of	Dropbox’s	engineering	values	is	to	“sweat	the	details,”	and	it	applies	to
the	PMs	as	well.	Be	prepared	to	think	through	all	the	edge	cases	of	your	product
answers	and	designs	in	detail.	Cultural	fit	 is	also	extremely	important,	but	they

don’t	ask	any	special	questions	to	screen	for	it.

Dropbox	has	a	very	focused	set	of	products,	so	be	familiar	with	all	of	them	and
think	through	what	you	would	do	if	you	were	a	PM	there.

Resumes
Chapter	7

It’s	 not	 your	 experience	 that	 lands	 you	 an	 interview;	 it’s	 how	 your	 resume
presents	 that	 experience.	 Even	 the	 best	 candidate	 in	 the	 world	 won’t	 get	 an
interview	with	a	 lousy	 resume.	After	 all,	 a	 company	wouldn’t	know	 that	 she’s
the	best	candidate	in	the	world.

And,	 in	 fact,	 many	 great	 candidates	 do	 have	 lousy	 resumes.	 They	 lack
perspective	about	their	own	experience,	get	confused	by	out-of-date	advice	from
career	 counselors,	 don’t	 back	 up	 what	 they’ve	 done	 with	 specifics,	 or	 write
generic	lofty	statements	that	end	up	meaning	nothing	to	the	resume	screeners.

A	bad	resume	is	an	issue	for	any	job,	but	especially	so	for	product	management
roles.	Communication	 is	 an	 important	 PM	 skill,	 and	 your	 resume	 is	 one	 clear
way	 to	 demonstrate	 that.	 A	 PM	 who	 can’t	 express	 her	 skills	 and
accomplishments	in	a	clear,	concise,	and	effective	way	is	a	bit	worrisome.	Much
more	so	than	in	other	roles,	you’ll	be	judged	for	the	quality	of	your	resume.

The	15	Second	Rule
You	know	what	a	resume	is,	but	do	you	truly	understand	how	it’s	used?	(Wait!
Don’t	skip	over	this	section!	You	actually	need	to	understand	this	to	write	a	good
resume.)

A	resume	isn’t	read;	it’s	skimmed.	A	resume	screener	will	glance	at	your	resume
for	about	15	seconds	(or	maybe	less)	to	make	a	decision	about	whether	or	not	to
interview	you.

This	forms	the	guiding	principle	of	resumes.	A	resume	should	be	optimized	for
that	15-second	skim.

Let	that	soak	in.	We	will	come	back	to	this	principle	again	and	again.

The	Rules
Every	 rule	 has	 its	 exception,	 but	 they’re	 called	 rules	 for	 a	 reason.	 Proceed
carefully	if	you	think	one	of	these	rules	doesn’t	apply	to	you.

Rule	#1:	Shorter	is	Better
Imagine	I	wanted	to	tell	you	as	much	about	myself	as	I	can,	but	your	attention
span	is	only	15	seconds.	Should	I	give	you	my	300-page	autobiography?	Or	my
condensed	one-paragraph	version?

The	300-page	version	will	have	a	lot	more	information,	but	that	doesn’t	matter.
In	15	seconds,	you’ll	only	have	time	to	read	the	first	paragraph.	I’d	be	lucky	if
you	learned	where	I	was	born	in	that	time.	Although	I	offered	more	information,
you	actually	learned	a	lot	less	about	me.

A	long	resume	is	like	that.	It	 takes	all	your	best	content	and	then	mixes	in	less
important	 information,	 leaving	 the	 resume	 reader	 with	 a	 worse	 overall
impression	of	you.

It’s	best	to	stick	to	just	the	highlights.

Implementing	This	Rule
A	good	rule	of	thumb	is	to	limit	your	resume	to	one	page	if	you	have	less	than	10
years	of	experience.	At	more	than	10	years,	you	might	be	able	to	justify	1.5	or	2
pages,	particularly	if	you’ve	held	many	different	jobs.

Before	 you	 say	 you	 can’t	 possibly	 fit	 everything	 you’ve	 done	 on	 one	 page,
you’re	right;	you	can’t.	However,	you	can	fit	 the	most	 important	 things	on	one
page.	You	might	have	 to	be	more	concise,	but	 that’s	a	good	 thing.	This	means
that	you’re	sticking	to	the	highlights.

When	 you’re	 thinking	 you	 need	more	 space	 for	 a	 particular	 role,	 ask	 yourself
what	 about	 that	 role	 is	most	 important.	 Is	 it	 the	 fact	 you	were	 a	 coder	 at	 one
point?	 Is	 it	 the	 impact	 you	had	 in	 reducing	 the	 company’s	 costs?	 Is	 it	 just	 the
name	of	the	company?

Focus	on	what	is	important,	and	leave	out	the	rest.

Also,	if	just	a	few	lines	force	your	resume	onto	another	page,	find	a	way	to	trim
down	your	resume.	A	resume	that	just	barely	goes	onto	a	second	page	suggests	a
poor	ability	to	prioritize.

Rule	#2:	Bullets,	Not	Blobs
Many	people	live	by	a	rule	of	“talk	more	about	what’s	more	important.”	There	is
some	wisdom	 to	 this	 guidance,	 but	 it	 can	 backfire	 on	 a	 resume.	 The	 longer	 a
chunk	of	text	is,	the	less	likely	a	resume	screener	is	to	read	the	resume.

Blobs	of	text—that	is,	bullets	or	paragraphs	that	are	three	lines	or	longer—tend
to	not	be	read.	Keep	things	short.

Implementing	This	Rule
Read	through	your	resume.	Anything	that’s	three	lines	of	text	or	more	should	be
condensed.	 Additionally,	 you	 should	 aim	 to	 have	 no	more	 than	 50	 percent	 of
your	bullets	expand	to	two	lines.	That	is,	at	least	half	of	your	bullets	should	be
just	one	line,	with	the	remainder	being	two	lines.

Depending	 on	 the	 situation,	 this	 might	 require	 alternative	 word	 choices,	 or	 it
might	 require	 cutting	 out	 some	 of	 the	 details.	 The	 impact	 of	 your	work	 often
matters	more	than	the	details,	so	it’s	okay	to	skimp	here.

Additionally,	if	just	a	few	words	of	a	bullet	cause	it	to	flow	to	the	next	line,	trim
it.	You	will	waste	space	otherwise.

Rule	#3:	Accomplishments,	Not	Responsibilities
People	don’t	care	what	you	were	told	to	do;	they	care	what	you	did.

Responsibilities	are	about	what	you	were	told	to	do.	Statements	outlining	these
offer	only	a	broad,	fluffy	overview	of	what	you	were	supposed	to	do	in	your	job.
They	 don’t	 make	 it	 clear	 if	 you	 actually	 had	 an	 impact.	 Moreover,	 your
responsibilities	 are	 often	 pretty	 obvious.	 We	 know,	 broadly	 speaking,	 what	 a
product	manager	or	a	software	developer	would	do	at	a	company.

Instead,	 you	 want	 to	 focus	 on	 your	 accomplishments.	 Prove	 to	 the	 resume
screener	you	had	an	impact.

Consider	the	difference	between	these	two	bullets:

	

Responsibility	 Oriented:	 Design	 features	 for	 Amazon	 S3	 and	 oversee
development	of	the	features	across	software	engineers	and	testers.
Accomplishment	Oriented:	 Designed	 the	 SS	 Frontline	 feature,	managed
its	development,	and	led	its	integration	across	three	products,	leading	to	an
additional	$10	million	in	revenue.

While	 the	 first	 bullet	 gives	 some	 some	 information	 about	 what	 you	 did,	 the
reader	won’t	walk	away	saying	“You	were	a	success	because_____.”	Make	your
resume	look	more	like	the	second	bullet.	That	shows	success.

Implementing	This	Rule
Using	the	present	 tense	 is	a	good	tip-off	 that	you’ve	 listed	a	responsibility.	 It’s
difficult	for	something	you	accomplished	to	be	written	in	the	present	tense.

Making	your	 resume	accomplishment	oriented	goes	beyond	 that,	 though.	After
all,	 if	you	 took	the	earlier	example	bullet	and	converted	 it	 to	past	 tense,	 it	still
wouldn’t	be	a	true	accomplishment.

Instead,	list	the	concrete	ways	you	had	an	impact.	Focus	on	the	impact	itself;	the
“what”	more	so	than	the	“how”	(although	both	are	important).

As	much	as	possible,	quantify	your	accomplishments.	How	much	money	did	you
make	 for	 your	 company?	 How	much	 time	 did	 you	 save	 your	 team?	 By	 how
much	did	you	improve	customer	retention?	An	estimation	is	okay	here.

If	you	have	an	existing	resume,	 it	might	help	 to	start	 from	scratch	with	one	of
these	questions	in	mind:
	

What	are	the	five	things	you	are	most	proud	of?
What	would	your	team	say	are	the	five	most	impactful	things	you	did?

The	answers	to	these	questions	should	form	your	bullets.

Your	 responsibilities	 should	 generally	 be	 clear	 from	 your	 specific
accomplishments	and	from	your	job	title.	However,	if	you	feel	you	must	explain
your	general	responsibilities,	a	good	place	is	immediately	under	the	job	title	and
in	italics,	so	as	to	separate	it	from	your	true	accomplishments.

Rule	#4:	Use	a	Good	Template
Every	few	months,	some	website	or	blog	publishes	a	 list	of	“amazing”	resume
designs	 which,	 undoubtedly,	 a	 bunch	 of	 job	 seekers	 attempt	 to	 copy.	 Such
resumes	 use	 infographic-style	 charts	 or	 mockup	 a	 resume	 in	 the	 style	 of	 the
Amazon.com	homepage	or	the	iOS	homescreen.

These	 resumes	 are	 cute,	 they	might	 show	 some	 degree	 of	 creativity,	 and	 they
might	even	grab	someone’s	attention.	But	unless	you’re	one	of	the	lucky	few	to
garner	 some	media	 attention	 for	 your	 flashy	 design	 (or	 you’re	 applying	 for	 a
designer	position),	a	resume	template	like	this	will	generally	hurt	you.

Many	 hiring	managers	 hate	 these	 graphical	 resumes	 because	 it’s	 hard	 to	 learn
much	about	you.	Information	isn’t	presented	in	a	clear	way,	and	the	information
that	is	presented	takes	up	way	more	space	than	necessary.

A	good	resume	template	won’t	make	your	friends	“ooh”	and	“ahh.”	It	probably
won’t	 be	 flashy	 or	 particularly	 creative.	 But	 it	 will	 get	 the	 job	 done—which
means	landing	you	an	interview.

Implementing	This	Rule
A	good	resume	is	reasonably	compact	and	quickly	showcases	your	highlights.

Look	for	a	resume	template	with	the	following:
	

Two	or	three	columns,	one	for	company	names	and	the	other	for	jobs
titles.	You	want	to	make	this	information	very	easy	to	pick	out,	especially	if
you	 have	 a	 top	 company	 on	 your	 resume.	 Location	 and	 dates	 are
considerably	less	important.	They	need	to	be	there,	but	they	don’t	need	to
leap	out	at	the	resume	screener.
No	left	column	dedicated	to	headings.	Many	resume	templates	use	the	left
side	of	the	page	for	headings	such	as	“Employment”	and	“Education.”	This
looks	attractive,	but	can	waste	20	percent	of	the	available	space.
Limited	 text	 stylings.	 Too	many	 fonts,	 sizes,	 casings,	 and	 colors	 can	 be
distracting.
Reasonable	 use	 of	whitespace.	 Too	much	whitespace	wastes	 space.	 Too
little	can	make	your	resume	difficult	to	read	and	can	suggest	that	you’re	not
good	at	prioritizing.

Reasonable	font	size	and	margins.	You	want	something	that’s	easy	to	read
while	not	being	wasteful	with	space.
Bullets.	Blocks	of	text	look	pretty	(particularly	on	a	graphical	resume),	but
will	be	skipped	over.

Most	 resume	 templates	 meet	 these	 criteria.	 You	 can	 find	 some	 samples	 at
www.crackingthepminterview.com.

Rule	#5:	Don’t	Skip	the	Best	Stuff
In	theory,	this	is	obvious.	Of	course	you	shouldn’t	 leave	the	best	stuff	off	your
resume!

In	practice	though,	many	candidates	ignore	this	final	rule.	They	leave	something
out	because	they	didn’t	feel	it	was	“appropriate”	for	a	resume	for	<insert	strange
reason>.	This	is	so	common	and	so	important	that	we’ve	listed	it	as	a	rule.

For	example,	Jessica,	a	product	manager	at	Amazon,	was	applying	for	other	PM
jobs	at	Amazon	and	other	companies.	After	multiple	 rounds	of	 resume	editing
and	 feedback,	 her	 resume	 was	 almost	 perfect—except	 for	 one	 detail.	 She’d
neglected	 to	 mention	 that	 she	 had,	 on	 the	 side,	 launched	 a	 gaming	 company,
hired	 multiple	 developers	 and	 designers,	 and	 overseen	 the	 development	 of	 a
game.	 The	 combination	 of	 this	 entrepreneurial	 effort	 and	 the	Amazon	 job	 are
basically	her	golden	ticket	into	any	PM	interview.

Why	didn’t	she	include	it?	Because,	due	to	some	medical	problems,	she	hadn’t
yet	 launched	 the	 game.	 She	 figured	 that	 you	 couldn’t	 list	 it	 until	 you	 were
“done.”

In	similar	situations,	other	people	have	given	a	variety	of	reasons:	“It	was	for	a
class.”	 “It	 wasn’t	 an	 official	 class	 project.”	 “We	 haven’t	 finished	 yet.”	 “We
didn’t	get	many	downloads.”

None	of	these	reasons	are	sufficient	to	exclude	something	from	your	resume.	If	it
helps	you,	list	it.

Implementing	This	Rule
Ask	yourself:	what	did	you	not	include?	Are	there	projects	you’ve	done	(on	your
own,	for	school,	for	a	friend’s	company,	for	a	hackathon,	etc.)	that	you	haven’t
listed?	 Any	 relevant	 hobbies?	 Or	 interests	 which	 have	 some	 interesting

accomplishment	(e.g.,	completing	a	triathlon)?

There	are	no	hard	and	fast	 rules	about	what	belongs	on	your	 resume	and	what
doesn’t.	If	it	makes	you	a	more	interesting	or	more	attractive	candidate,	include
it.

Attributes	of	a	Good	PM	Resume
Employers	 want	 PMs	 who	 have	 technical	 skills,	 love	 technology,	 possess
initiative,	are	leaders,	and	will	have	an	impact.	A	resume	is	a	chance	to	showcase
these	parts	of	your	background.

It’s	more	 than	 that	 though.	A	 resume	 is	 itself	 a	 product.	 It	makes	 a	 statement
about	your	communication	skills,	design	skills,	and	your	ability	to	put	yourself
in	the	“user’s	shoes.”

Think	 about	 your	 audience:	 What	 do	 they	 care	 about	 and	 how	 will	 you
demonstrate	that	you	have	those	things?	For	example,	if	you	work	for	a	company
that’s	not	well	known,	can	you	concisely	describe	what	 the	company	 is	on	 the
resume?	 Is	 there	 a	way	 you	 can	 establish	 credibility,	 such	 as	mentioning	who
funded	 the	 company?	 This	 is	 your	 chance	 to	 show	 off	 your	 “product	 design”
skills.

For	many	PM	positions,	it	will	be	important	to	demonstrate	these	skills:
	

Passion	for	Technology:	 If	you	have	 technical	skills	or	have	worked	at	a
tech	 company,	 this	will	 probably	 show	 enough	 passion	 for	 technology.	 If
you	 don’t	 have	 these	 things,	 find	 some	 other	 way	 to	 get	 involved	 with
technology.	You	could	start	 learning	to	code	 through	online	courses,	build
your	own	website,	or	even	outsource	development	of	a	project.
Initiative:	You	 could	 show	 initiative	 through	 a	 club	 at	 your	 university,	 a
new	employee	 training	program	at	your	startup,	or	even	a	monthly	dinner
for	 people	 interested	 in	 technology.	 Show	 these	 experiences	 on	 your
resume.
Leadership:	 If	you’ve	managed	people	 in	 some	capacity,	 show	 this.	This
experience	 could	 include	 mentoring	 /	 managing	 an	 intern	 or	 being	 the
president	of	a	club	or	organization.
Impact:	 Show	 that	 you’ve	 had	 a	 positive	 impact	 in	 your	 prior	 roles.	 Be
clear	 about	 what	 you’ve	 personally	 driven,	 since	 your	 team’s
accomplishments	 are	 much	 less	 relevant	 than	 your	 own.	 Explicitly	 state
what	you’ve	built,	created,	 led,	or	 implemented.	Avoid	weak	phrases	such
as	“worked	with”	and	“helped	with.”
Technical	Skills:	 If	you	have	programming	skills,	 list	 these	programming

languages	in	a	“technical	skills”	section.	This	will	suggest	some	degree	of
proficiency.	Ideally	you	will	also	have	specific	projects	to	list.
Attention	to	Detail:	This	is	more	about	what	you	don’t	do	than	what	you
do.	No	 spelling	 or	 grammar	mistakes.	Consistency	 in	 ending	 bullets	with
periods	 (periods	 are	 optional,	 but	 you	 need	 to	 be	 consistent).	 Correct
contact	information.

Go	through	your	resume	and	look	for	signs	of	each	of	these	attributes.	If	you’re
missing	 some	of	 these	 attributes	 or	 skills,	 find	ways	 to	 acquire	 them	and	 then
add	them	to	your	resume.

What	to	Include
Your	 resume	 should	 obviously	 include	 your	 work	 experience	 and	 education.
What	about	all	the	other	little	details?

Objectives:	No
Objectives	are	almost	always	a	waste	of	 space.	Let’s	dissect	 this	example	of	a
typical	objective:

“Experienced	 technical	 leader	 with	 a	 bias	 for	 action	 seeking	 product
management	role	in	a	fast-paced,	growing	company.”

The	 “bias	 for	 action”	 part	 is	 subjective	 and	 a	 claim	 anyone	 can	 make.	 The
“experienced”	 description	 would	 be	 clear	 from	 the	 candidate’s	 resume.	 The
description	of	the	company	doesn’t	help	either.	You’re	applying	to	this	company;
you	are,	by	definition,	interested	in	it,	whether	it’s	fast	paced	or	not.

Objectives	 are	 just	 a	 verbose	 way	 of	 describing	 the	 role	 you’re	 applying	 for.
There	is	no	need	to	state	what	will	already	be	clear	from	your	application.

Summary:	Rarely
With	few	exceptions,	a	summary	is	rarely	useful.	If	your	resume	is	sufficiently
concise,	it	already	is	a	summary.	There’s	no	need	to	re-summarize	it	in	paragraph
form.

Moreover,	 most	 summaries	 are	 laden	 with	 fluffy,	 subjective	 personal
descriptions	such	as	“dynamic”	and	“action-oriented.”	These	carry	little	weight
in	the	eyes	of	the	reader.

Occasionally,	 summaries	 can	 highlight	 specific	 accomplishments	 or
responsibilities	 that	might	 otherwise	 not	 jump	out	 at	 the	 reader.	However,	 this
case	is	unusual.	A	proper	design	can	almost	always	make	your	highlights	readily
apparent.

Skills:	As	Needed
You	might	want	 to	 include	 a	 skills	 section	on	your	 resume,	particularly	 if	 you
have	 programming	 skills	 or	 experience	 with	 design	 software.	 Skip	 obvious

skills,	such	as	Microsoft	Word.	Listing	this	as	a	skill	communicates	only	that	you
know	how	to	open	a	file,	edit	it,	and	save	it.	Everyone	knows	how	to	do	that.

Awards:	Yes—And	Make	Them	Meaningful
You	 should	 list	 awards	 you’ve	 received.	 Even	 ones	 that	 don’t	 seem	 directly
applicable	 to	 the	 skillset	 are	 often	 relevant	 in	 showing	 success,	 hard	work,	 or
creativity.

Many	 candidates	 list	 their	 awards	 but	 fail	 to	 make	 their	 awards	 meaningful.
They	list	an	award	like	this:
	

John	R.	Robertson	Memorial	Prize	(2013).

A	 resume	 screener	 has	 no	 idea	 what	 to	 make	 of	 this.	 What	 is	 the	 John	 R.
Robertson	award	for?	How	select	is	it?	What	did	you	do	to	win	it?

Ideally,	your	resume	should	describe	what	the	award	is	for	and	how	selective	it
is.	The	award	above,	for	example,	might	be	listed	as:
	

John	R.	Robertson	Memorial	Prize	(2013):	Placed	1st	out	of	75	students	in
business	plan	competition.	Entered	business	plan	for	low-cost	solar	heated
pools.

This	establishes	both	relevance	and	selectivity.

Activities:	Sometimes
Depending	on	what	 the	activity	 is	and	what	you’ve	done	with	 it,	activities	and
interests	may	be	useful.

The	more	relevant	the	activity	is,	the	better	it	is	to	list	it.	Technical	activities	and
creative	work	can	be	easily	seen	as	applicable.

Even	 if	 the	 activity	 itself	 isn’t	 particularly	 relevant,	what	 you’ve	 done	with	 it
might	 be.	 For	 example,	 running	 is	 probably	 not	 applicable	 to	 your	 job
application	 (unless	 you’re	 applying	 to	 a	 fitness-related	 company).	However,	 if
you’ve	completed	a	marathon	in	17	states	with	a	lifetime	goal	of	covering	all	50,
then	 it	 might	 be	 relevant	 in	 showing	 determination—and	 in	 just	 making	 you

“interesting.”

Think	 about	 activities	 the	way	 you	would	 other	work	 on	 your	 resume.	 Try	 to
back	 each	 up	 with	 a	 concrete	 accomplishment.	 If	 you’re	 just	 another	 person
listing	“mountaineering”	on	a	resume,	it	usually	won’t	mean	too	much.

Projects:	Yes
Projects	are	incredibly	important.	In	fact,	projects	are	probably	the	second	most
important	thing,	after	work	experience.

If	 you	 have	 any	 side	 projects,	 list	 them	 on	 your	 resume.	 Describe	 what	 the
project	is	that	you	built	and	what	metrics	of	success	you	have.

For	example:
	

Snakes	 and	 Ladders	 (iOS	 game):	 Designed	 UX	 for	 multi-person	 turn-
based	 iOS	 game,	 and	 hired	 outsourced	 development	 team	 to	 implement
game.	Achieved	10,000	free	downloads	in	first	month	with	10%	conversion
to	paid	version.

This	 shows	 the	 leadership	 responsibilities	 you	 took	 on	 and	 quantifies	 your
impact.

Website	URL:	Yes
If	you	have	a	website	or	blog,	you	should	include	the	URL	on	your	resume.

If	you	don’t	have	a	website,	consider	building	one.	Your	website	should	provide
your	 resume,	 as	 well	 as	 additional	 details	 about	 your	 projects	 (such	 as
screenshots).	It	can	also	list	articles	you’ve	written,	press	you’ve	gotten,	lectures
you’ve	given,	and	other	related	interests.

Some	 basic	 personal	 information	 is	 fine,	 but	 keep	 the	 website	 mostly
professional.	Whether	you	list	it	or	not,	employers	will	likely	look	at	it.

Social	Media	Accounts:	Maybe
If	you	are	active	on	social	media	about	technology	or	work-related	issues,	your
social	media	accounts	 could	prove	valuable.	Make	 sure	 to	 scrub	any	old	posts

that	might	reflect	poorly	on	you.

College	/	University	Details:	Sometimes
The	further	you	are	from	college	graduation,	the	fewer	details	should	remain	on
your	resume.	Exactly	when	to	remove	items	depends	on	what	 the	activity	was.
Use	the	following	as	general	guidance:
	

Club	Membership	and	Other	“Participatory”	Items:	Simply	being	part
of	 a	 club	 doesn’t	 say	 anything	 about	 you.	 These	 can	 be	 removed	 upon
graduation,	if	not	earlier.
Programming	Projects:	If	you	have	programming	projects,	these	can	stay
on	your	 resume	 for	 about	2	 -	3	years	 after	graduation.	 If	you	can	 replace
them	earlier	with	more	interesting	projects,	that’s	even	better.
Substantial	Leadership	Positions:	 If	you	were	 the	president	of	a	club	or
had	major	accomplishments	as	a	leader,	you	could	justify	keeping	these	on
your	 resume	 for	 2	 -	 5	 years	 after	 graduation.	 Simply	 being	 “VP	 of
Marketing”	for	a	club	doesn’t	say	much	and	can	be	removed	fairly	quickly.
Founding	Accomplishments:	 Founding	 a	 club,	 charity,	 sport,	 or	 another
major	 activity	 shows	 you	 have	 initiative	 and	 that	 you	 get	 things	 done.
Therefore,	 you	 can	 justify	 keeping	 it	 on	 your	 resume	 for	 a	 bit	 longer—
possibly	 5	 -	 10	 years,	 depending	 on	 how	 significant	 the	 accomplishment
was.
Awards:	 This	 varies	 wildly	 depending	 on	 the	 awards.	 An	 extremely
impressive	award	could	conceivably	stay	on	your	 resume	for	10	years	 (or
even	 longer).	 Less	 impressive	 awards,	 such	 as	 winning	 third	 place	 in	 a
college	 programming	 competition,	 should	 probably	 be	 removed	 within
about	two	years.

This	guidance	is	merely	a	rule	of	thumb,	and	it	might	not	be	the	right	advice	for
you	and	your	resume.	How	long	is	appropriate	for	you	depends	on	what	the	item
shows,	 how	 important	 that	 skillset	 is,	 how	 else	 you	 show	 that,	 and	 what	 the
opportunity	 cost	 of	 including	 that	 item	 is.	 For	 example,	 if	 your	 resume	 paints
you	 to	be	a	 stereotypical	geek	and	you’re	applying	 for	a	product	manager	 job,
being	a	member	of	a	standup	comedy	group	might	stay	on	your	resume	for	five
years	or	more.

Generally,	your	education	will	go	at	the	top	of	your	resume	if	you’re	in	school,
but	otherwise	your	work	experience	comes	first.	Rather	than	thinking	of	this	as	a

hard	and	fast	rule,	ask	whether	you	would	prefer	companies	see	your	company
or	your	school	first.	If	your	work	experience	is	much	better	than	your	education
(or	vice	versa),	it	might	make	sense	to	break	this	“rule.”

GPA
For	the	first	few	years	out	of	school,	you	should	list	your	GPA	if	it’s	above	a	3.0
/	4.0.	If	you	are	more	than	about	five	years	out	of	school,	the	minimum	goes	up
to	around	a	3.5.	The	reason	for	this	is	simple:	don’t	list	something	from	a	long
time	ago	unless	it	really	makes	you	stand	out.

If	you	have	an	exceptional	GPA,	there’s	no	last	possible	timepoint	for	listing	it.
You	can	always	tack	it	onto	the	bullet	listing	your	major.	Most	people	probably
won’t	care,	but	it	doesn’t	take	any	extra	space.	The	opportunity	cost	is	zero.

If	your	university	computes	GPA	on	something	other	than	a	4.0	system,	it	may
be	hard	for	other	people	to	understand	what	your	GPA	means.	In	this	case,	try	to
translate	 your	 GPA	 into	 something	more	meaningful.	 For	 example,	 you	 could
translate	your	GPA	by	appending	a	line	like	(“Equivalent	to	a	3.3	/	4.0”)	or	you
could	list	a	class	rank	or	percentile.

Online	Courses	and	“Extracurricular”	Education
If	you’ve	been	taking	online	courses,	you	can	list	these	on	your	resume.	Doing
so	shows	a	passion	for	learning	as	well	as	some	expertise	in	the	subject,	both	of
which	are	good	things.

The	 tricky	 thing	 is	 how	 to	 list	 an	 online	 course.	 If	 the	 course	 is	 significant
enough,	you	can	list	 it	under	“Education,”	but	more	likely	you’ll	put	this	in	an
“Additional	Information”	section.

Find	ways	 to	make	 these	 classes	 sound	more	 legitimate.	 If	 you	 have	 a	 (good)
grade,	you	can	list	that.	Or,	if	you	have	completed	interesting	projects	for	these
courses,	that	will	help	as	well.

Real	Resumes:	Before	&	After
Chapter	8

Even	when	a	resume	was	good	enough	to	land	someone	a	PM	role,	it	can	usually
be	improved.	To	give	you	a	sense	of	what	kind	of	improvements	you	can	make,
we’re	 sharing	 examples	 of	 the	 real	 resumes	 that	 landed	 these	 jobs,	 along	with
examples	of	how	they	could	be	made	even	better.

Note:	 The	 “before”	 resumes	 shown	 here	 match	 what	 the	 candidate
submitted	to	get	a	PM	role,	although	they	have	been	anonymized	in	some
cases.	Anonymizing	resumes	involved	changing	names	and	key	details,	but
keeping	the	facts	roughly	equivalent.	For	example,	rather	than	saying	that	a
candidate	 went	 to	 Columbia	 University,	 we	 might	 instead	 say	 Cornell
University.

Richard	Wang	(Anonymized)
Richard	Wang	 received	offers	 from	Dropbox,	Google,	 and	Uber	 in	2013	using
the	resume	below.

(go	to	Assessment)
(go	to	Improved	Resume)
The	Original	Resume
EXPERIENCE

ImaginiNow	(go	to	Improved)
Head	of	Product	(January	2013	-	April	2013)
	

Led	product	team	to	help	single	people	meet	friends	of	friends
Achieved	90%	increase	in	requests	to	meet	people,	97%	increase	in	signups
and	23%	increase	in	viral	invites
Drove	 product	 strategy	 based	 on	 company	 vision,	 user	 feedback	 and
metrics;	cut	features	in	half	to	increase	focus
Developed	feature	ideas	into	detailed	specs	and	collaborated	with	designer
to	create	mockups
Defined,	 implemented	 and	 analyzed	 metrics	 using	 Mixpanel	 to	 measure
product	success
Prioritized	work	 for	weekly	 sprints	 and	 coordinated	with	 engineering	 and
design	teams	to	track	progress
Established	 new	 channels	 for	 customer	 development	 including	 usability
focus	groups	and	a	user	advisory	board
Applied	lean	startup	methodologies	to	design	experiments,	build	minimum
viable	products	and	iterate	rapidly

Connecto	(go	to	Improved)
Founder	(2010	-	2013)
	

Created	 a	 social	 networking	 app	 to	 connect	 professionals	 for	 job
opportunities	and	sales	leads

Raised	$500K	from	investors	including	Jason	McMillan	(initial	investor	in
Vault.com)	and	Infinity	Venture	Partners
Drove	product	vision,	design	and	execution	based	on	customer	needs	and
competitive	landscape
Wrote	feature	specs,	designed	user	experiences	and	created	mockups	using
Fireworks,	HTML/CSS,	and	Axure
A/B	tested	landing	page	design,	email	copy,	Tweets	and	Facebook	posts	to
increase	conversion
Defined	 and	 analyzed	 key	 performance	 metrics	 to	 optimize	 user
engagement
Developed	site	using	Ruby	on	Rails,	HAML,	jQuery,	CoffeeScript,	SCSS,
Twitter	Bootstrap,	PostgreSQL	and	MongoDB

Microsoft	(go	to	Improved)
Project	Manager	(2005	-	2009)
	

Senior	member	of	the	project	management	team	that	guided	development	of
Windows
Led	 20%	 of	 cross-functional	 projects	 to	 develop	 new	 technologies	 for
Windows:	 wrote	 engineering	 plans,	 recruited	 ten-person	 development
teams,	 tracked	 progress	 and	 presented	 results	 to	 Senior	Vice	 President	 of
Engineering
Coordinated	 with	 30+	 engineering	 teams	 to	 unblock	 progress,	 prioritize
tasks	and	meet	milestones
Communicated	 project	 updates	 and	 goals	 across	 860+	 person	 team;
produced	status	reports	for	SVP	of	Engineering
Worked	 with	 marketing	 to	 develop	 product	 demo	 for	 Microsoft	 Build
Developers	 Conference;	 met	 weekly	 with	 Senior	 Vice	 President	 of
Marketing	for	feedback
Organized	internal	tech	talks	program	to	evangelize	new	technologies;	daily
attendance	of	300+	people
Developed	 project	management	 tools	 using	C++,	C#,	 and	 SQL	 that	were
used	across	the	organization
Debugged	technical	OS	issues	alongside	engineers	to	unblock	daily	builds

Madison	Assisted	Living	Facility	(go	to	Improved)
Project	Lead	(2004	-	2005)
	

Led	 15-person	 team	 to	 design	 and	 implement	 web-based,	 touch-screen
medical	log

	

EDUCATION

Kellogg	School	of	Management,	Northwestern	University	(go	to	Improved)
Master	of	Business	Administration;	Innovation	&	Entrepreneurship	Major	(2009
-	2011)

University	 of	 California,	 Santa	 Barbara,	 School	 of	 Engineering	 (go	 to
Improved)
B.S,	Computer	Science	&	Engineering	Major	(2001	-	2005)
	
ADDITIONAL	INFORMATION
	

Interests:	 Adventure	 travel	 (hiked	 Inca	 Trail,	 sailed	 Gulf	 of	 Mexico,	 ice
climbed	in	Adirondacks),	photography	and	Krav	Maga

	

Assessment

(go	to	Original	Resume)
(go	to	Improved	Resume)
Richard’s	 resume	 is	 actually	 fairly	 good,	 compared	 to	 many	 other	 resumes.
However,	it	could	still	be	stronger.

Most	 importantly,	 Richard	 could	 make	 his	 resume	 more	 accomplishment-
oriented.	He	 should	 take	each	 job	and	ask	himself,	 “What	are	my	 five	biggest
accomplishments?”	These	should	form	the	bullets	of	his	resume.

For	 example,	 look	 at	 the	 bullets	 under	 his	 most	 recent	 role.	 They	 are	 vague
statements	such	as	“drove	product	strategy”	and	“prioritized	work.”	These	aren’t
truly	 accomplishments;	 they’re	 just	 responsibilities	 worded	 in	 the	 past	 tense.
Until	you’ve	shown	an	impact,	it’s	not	really	that	meaningful.

Additionally,	Richard	has	many	bullets	under	each	job,	making	each	bullet	less
impactful	than	if	the	list	were	restricted	to	just	the	highlights.

If	he’s	doing	this	to	take	up	space	on	his	resume,	he’ll	need	to	find	some	other
side	of	his	background	to	offer.	Perhaps	he	took	on	some	interesting	roles	during
his	MBA	or	has	some	projects	he’s	done	on	the	side.

Finally,	he	should	consider	listing	his	programming	languages	under	“Additional
Information.”	He’s	got	 the	space	(once	he	 trims	down	his	bullets),	and	 this	 list
would	 be	 a	 good	 way	 of	 quickly	 showing	 an	 interviewer	 that	 he	 is	 very
technical.

With	that	said,	here	is	what	an	improved	resume	might	look	like.	We’ve	offered
explanations	 of	 what	 some	 of	 his	 companies	 do	 and	 offered	 more	 concrete
accomplishments	with	his	bullets.

New	and	Improved

(go	to	Original	Resume)
(go	to	Assessment)
EXPERIENCE	

ImaginiNow	(go	to	Original)
Head	of	Product	(January	2013	-	April	2013)
ImaginiNow	 is	 a	 Sequoia-backed	 social	 networking	 website	 with	 5+	 million
members	which	helps	single	people	meet	friends	of	friends.
	

Led	 product	 team	 of	 ten	 engineers	 and	 revamped	 engineering	 processes,
implementing	weekly	code	sprints,	agile	methodologies,	and	code	reviews.
Achieved	 90%	 increase	 in	 requests	 to	 meet	 people,	 97%	 increase	 in
signups,	and	23%	increase	in	viral	invites.
Led	project	 to	 redesign	website	and	developed	new	data-driven	approach,
which	resulted	in	a	97%	increase	in	signups	and	a	90%	increase	in	requests
to	meet	people.
Increased	viral	invites	by	27%	by	designing	a	new	feature	to	connect	with
existing	Facebook	and	Twitter	friends.
Pared	 down	 feature	 list	 by	 50%	 to	 enable	 more	 rapid	 development	 of

critical	products.
Designed	 and	 led	 three	 usability	 studies	 with	 more	 than	 100	 people
participating.

Connecto	(go	to	Original)
Founder	(2010	-	2013)
Connecto	 is	 a	 social	 networking	 app	 to	 connect	 professionals	 with	 job
opportunities	and	sales	leads.	It	peaked	with	100,000+	members	and	ten	million
pageviews	per	month.
	

Successfully	 led	 fundraising	 efforts	 for	 company,	 raising	 $500K	 from
investors	 including	 Jason	 McMillan	 (initial	 investor	 in	 Vault.com)	 and
Infinity	Venture	Partners.
Built	 initial	 prototype	 /	 minimum	 viable	 product	 which	 allowed	 users	 to
quickly	search	through	their	LinkedIn	connections	based	on	a	“need.”
Led	 team	 of	 four	 (two	 engineers,	 one	 designer,	 one	 tester)	 through	 two
moderate	pivots,	redefining	strategy	and	shifting	team	to	new	vision.
Developed	company	dashboard	to	enable	tracking	of	user	engagement.
Developed	website	along	with	two	engineers	using	Ruby	on	Rails,	HAML,
jQuery,	 CoffeeScript,	 SCSS,	 Twitter	 Bootstrap,	 PostgreSQL,	 and
MongoDB.

Microsoft	(go	to	Original)
Project	Manager	(2005	-	2009)
	

Senior	member	of	the	project	management	team	that	guided	development	of
Windows.
Led	 cross-functional	 teams	 of	 10	 -	 20	 employees	 to	 develop	 new
technologies	 for	 Windows:	 debugged	 issues	 to	 unblock	 daily	 builds,
managed	project	schedules,	and	coordinated	project	goals.
Launched	 internal	 tech-talks	 program	 to	 evangelize	 new	 technologies	 and
build	daily	attendance	to	an	average	of	300+	people.
Managed	 weekly	 status	 reports	 for	 SVP	 of	 Engineering	 by	 synthesizing
information	from	four	teams	of	30	engineers.
Built	new	project	management	tool	using	C++,	C#,	and	SQL	and	rolled	out
usage	across	team	of	25	project	managers.
Developed	 product	 demo	 for	 Microsoft	 Build	 Developers	 Conference

(5000+	attendees).

Madison	Assisted	Living	Facility	(go	to	Original)
Project	Lead	(2004	-	2005)
	

Led	 15-person	 team	 to	 design	 and	 implement	 web-based,	 touch-screen
medical	log.

	

EDUCATION

Kellogg	School	of	Management,	Northwestern	University	(go	to	Original)
Master	of	Business	Administration;	Innovation	&	Entrepreneurship	Major	(2009
-	2011)
	

Beer	Aficionados	(President	/	Founder):	Founded	beer	club	and	grew	club
to	100+	members.	Raised	$20,000	in	sponsorship	from	local	breweries.
Launch	 Accelerator:	 Accepted	 into	 Kellogg’s	 Launch	 Accelerator,	 an
incubator	for	startups	with	15%	acceptance	rate.

University	 of	 California,	 Santa	 Barbara,	 School	 of	 Engineering	 (go	 to
Original)
B.S,	Computer	Science	&	Engineering	Major	(2001	-	2005)
	
ADDITIONAL	INFORMATION
	

Programming	Languages:	Ruby	on	Rails,	C++,	C#,	SQL.
Interests:	 Adventure	 travel	 (hiked	 Inca	 Trail,	 sailed	 Gulf	 of	 Mexico,	 ice
climbed	in	Adirondacks),	photography	and	Krav	Maga.

Paul	Unterberg
Paul	worked	his	way	up	from	tech	support	into	a	product	management	role	at	a
top	startup.	Here	is	his	most	recent	resume.

(go	to	Assessment)
(go	to	Improved	Resume)
Original	Resume
Software	Product	Manager
Areas	 of	Expertise:	Minimum	viable	 product,	market	 analysis	 (product/market
fit),	 Agile	 development,	 wireframing/prototypes,	 10x	 productivity	 in	 startup
environments.
	
PROFESSIONAL	SUMMARY

Pricelock,	Inc.,	Redwood	City,	CA	(2010–Present)	(go	to	Improved)
Senior	Product	Manager
Goldman	 Sachs	 and	 Artiman	 Ventures	 funded	 startup.	 Ownership	 of	 multiple
web-based	 financial	 service,	 risk	 management	 and	 energy	 trading	 products.
Responsible	for	design	and	specification	of	new	products	and	enhancing	existing
products.
	

Launched	 online	 marketplace	 for	 energy	 traders,	 transacting	 $2	 billion+
worth	of	energy	products
Increased	 the	 productivity	 of	 development	 team	 by	 leading	 in	 Product
Owner	role
Conceived	 services	 and	 products	 that	 helped	 company	 close	 fundraising
from	new	investors

TechExcel,	Inc.,	San	Francisco,	CA	(2003–2010)	(go	to	Improved)
Associate	Director,	Product	Management	(2006–2010)
Product	Manager	(2004-2006)
	
Managed	 product	 organization.	 Created	 product	 strategies	 for	 TechExcel’s
flagship	 product	 line,	 worked	 with	 customers	 to	 define	 requirements	 and

features,	 directed	 outsourced	 and	 globally	 distributed	 development	 teams.
Evangelized	technology	solutions	to	prospects,	customers,	analysts,	and	internal
teams.
	

Introduced	Scrum,	significantly	improving	product	development
Created	 systems	 to	 empirically	 prioritize	 and	 balance	 the	 customer’s	 and
TechExcel’s	business	needs
Brought	 new	 products	 to	 market	 and	 doubled	 revenues	 from	 software
renewals

Senior	Solutions	Engineer	(2003–2004)
Provided	technical	consulting,	training,	and	ongoing	support	to	industry-leading
customers
	

Consulting	 for	 deployment	 of	 ALM	 and	 CRM	 practices	 and	 software;
achieved	the	highest	level	of	customer	satisfaction	on	every	deployment	(5
out	of	5	customer	rating).

Microsoft	Consulting/San	Francisco	Unified	School	District,	San	Francisco,	CA
(1999–2003)	(go	to	Improved)
Senior	Database	Architect
	

Administered	 multi-platform	 network	 environment	 overseeing	 a	 team	 of
DBAs	that	supported	100+	database	systems	for	all	SF	schools.

	

EDUCATION

BS	-	Computer	Science,	San	Francisco	State	University	(go	to	Improved)
	
LANGUAGES	AND	TOOLS
PHP,	 SQL,	 Visual	 Basic,	 C,	 JavaScript,	 HTML,	 CSS,	 Excel,	 Balsamiq,
PowerPoint,	Apache,	MySQL,	Linux,	AWS,	Oracle,	Marketo,	Google	Analytics,
Wordpress,	Photoshop,	Fireworks,	SalesForce

Assessment

(go	to	Original	Resume)
(go	to	Improved	Resume)
The	 major	 gap	 in	 Paul’s	 resume	 is	 specifics.	 He’ll	 assert	 something	 such	 as
“brought	new	products	to	market,”	but	it’s	not	really	clear	which	projects	those
are.	 Similarly,	 he’ll	 say	 that	 he	 “increased	 the	 productivity	 of	 development
team,”	but	he	doesn’t	explain	exactly	how	he	did	that.

There’s	 another	 issue	 that’s	more	minor	 but	 still	worth	 correcting:	 formatting.
He’s	 bolded	 the	 job	 titles	 as	 though	 to	 say,	 “Hey!	Look	 at	me!	 I’m	 a	 product
manager!”	This	isn’t	a	particularly	interesting	detail;	many	job	applicants	will	be
product	managers.	Instead,	he	should	highlight	his	companies.

The	 “areas	 of	 expertise”	 section	won’t	 hurt	 Paul,	 but	 it	 also	won’t	 help	much
either.	It’s	better	to	demonstrate	these	skills	through	accomplishments.

Some	projects	or	activities	outside	of	work	would	also	be	an	improvement.	If	he
has	these,	he	should	list	them.

Here’s	how	an	improved	resume	could	look.

New	and	Improved

(go	to	Original	Resume)
(go	to	Assessment)
PROFESSIONAL	SUMMARY

Pricelock,	Inc.	(Redwood	City,	CA.	2010	-	Present)	(go	to	Original)
Senior	Product	Manager
Goldman	 Sachs	 and	 Artiman	 Ventures	 funded	 startup.	 Ownership	 of	 multiple
web-based	 financial	 service,	 risk	 management	 and	 energy	 trading	 products.
Responsible	for	design	and	specification	of	new	products	and	enhancing	existing
products.
	

Launched	 online	 marketplace	 for	 energy	 traders,	 transacting	 $2	 billion+

worth	of	energy	products.
Conceived	 of	 and	 owned	 a	 proof-of-concept	 predictive	 trading	 feature,
which	demonstrated	ability	to	increase	profit	by	25%.	This	was	a	key	driver
in	successfully	closing	a	$10	million	fundraising	round.
Established	and	rolled	out	better	development	practices	for	team	in	order	to
improve	productivity	and	product	quality,	 including	readability	guidelines,
timeline	 estimates,	 Agile	 development,	 “no-meeting	 Wednesdays,”	 and
regular	bug	triaging.

TechExcel,	Inc.	(San	Francisco,	CA.	2003–2010)	(go	to	Original)
Associate	Director,	Product	Management	(2006–2010)
Product	Manager	(2004-2006)
Managed	 product	 organization.	 Created	 product	 strategies	 for	 TechExcel’s
flagship	 product	 line,	 worked	 with	 customers	 to	 define	 requirements	 and
features,	 directed	 outsourced	 and	 globally	 distributed	 development	 teams.
Evangelized	technology	solutions	to	prospects,	customers,	analysts,	and	internal
teams.
	

Owned	and	launched	data	analysis	tool	to	enable	doctors	to	more	accurately
track	clinical	trial	data,	leading	to	a	95%	reduction	in	errors.
Doubled	revenues	from	software	renewals	by	analyzing	usage	metrics	and
designing	new	flow	for	product	renewals.
Introduced	Scrum	and	led	daily	meetings	of	five	engineers.
Designed	 business	 plan	 for	 medical	 records	 product	 targeted	 at
governmental	organizations,	growing	revenue	by	30%.
Designed	 wireframes	 and	 built	 prototype	 for	 FDA	 approval	 product	 and
successfully	pitched	execs	on	launching	new	division.

Senior	Solutions	Engineer	(2003–2004)
Provided	technical	consulting,	training,	and	ongoing	support	to	industry-leading
customers
	

Consulting	 for	 deployment	 of	 ALM	 and	 CRM	 practices	 and	 software;
achieved	the	highest	level	of	customer	satisfaction	on	every	deployment	(5
out	of	5	customer	rating).

Microsoft	Consulting/San	Francisco	Unified	School	District	 (San	Francisco,
CA.	1999–2003)	(go	to	Original)

Senior	Database	Architect
	

Administered	multi-platform	network	environment	overseeing	a	five-person
team	of	DBAs	that	supported	100+	database	systems	for	all	San	Francisco
schools.

	

EDUCATION

San	Francisco	State	University	(go	to	Original)
B.S.,	Computer	Science
	
PROJECTS	AND	ACTIVITIES
	

Commercy	(2012):	Built	custom	e-commerce	website	for	local	bike	store,
supporting	 shipping	 calculations,	 online	 store	 management,	 and	 custom
themes.	PHP,	CSS,	HTML.
SF	Tutoring,	President	(2010	-	2012):	Ran	tutoring	program	consisting	of
100	 low-income	 families	 and	 40	 tutors.	 Designed	 new	 tutor	 screening
program,	 reducing	 annual	 turnover	 from	 50%	 to	 20%	 compared	 to	 prior
president.

	

LANGUAGES	AND	TOOLS
	

PHP,	Visual	Basic,	C,	JavaScript,	SQL	/	MySQL,	HTML,	CSS.
Balsamiq,	Apache,	AWS,	Oracle,	Marketo,	Google	Analytics,	 Photoshop,
Fireworks,	SalesForce.

Amit	Agarwal	(Anonymized)
Amit	Agarwal	received	an	internship	offer	from	Google	for	an	associate	product
manager	role.

(go	to	Assessment)
(go	to	Improved	Resume)
Original	Resume
EDUCATION

Stanford	University	(go	to	Improved)
Bachelor	 of	 Science,	 expected	 graduation	 in	May	 2013;	GPA:	 3.65,	 Projected
major:	Computer	Science.	Winner	of	Facebook	Summer	of	Hack	2011

Mellow	Brooks	Charter	High	School	(go	to	Improved)
Diploma,	June	2009,	GPA:	4.0	/	4.0,	SAT:	800	R,	800	M
Awards/Honors:	 Valedictorian,	 National	 Merit	 Finalist,	 National	 AP	 Scholar,
McAllister

Scholarship,	Alexis	X.	Wynn	Scholarship

EXPERIENCE

Codesion	(go	to	Improved)
Software	Engineering	Intern,	Summer	2011
Built	 Python	 system	 which	 continuously	 syncs	 bug	 database	 with	 any	 target
system,	 such	as	 search	engines	or	 integration	platforms,	while	handling	 failure
conditions.

Stanford	Law	School	(go	to	Improved)
Research	Assistant,	Spring	2010-Summer	2010
Assistant	to	Dr.	Gilad	Zalmon.	Analyzed	data	from	Michigan	HRS	to	determine
health	 effects	 of	 retirement.	 Researched	 publication	 bias	 in	 Corporate
Governance	articles.

Stanford	Graduate	School	of	Business	(go	to	Improved)
Research	Assistant,	Summer	2010

Worked	with	PhD	candidate	Michael	 Jameson	and	Dr.	Patrick	Revik	 to	collect
information	 on	 all	 publicly	 traded	 companies.	Worked	 to	 build	 comprehensive
industry	classification	standard.

ACTIVITIES
(go	to	Improved)
Stanford	Upstart,	President,	February	2010	–	present

Stanford	ACM	Team,	Member,	 September	 2010	 –	 present	 (5th	 place	 at	ACM
regionals)

Stanford	Club	Soccer	Team,	Goalie,	January	2009	–	present

Stanford	A	Cappella,	January	2010	-	present

SKILLS
(go	to	Improved)
Computer:	 C,	 Python,	 Java,	 SQL,	 JavaScript	 (some),	 Ruby	 (some),	 Scheme
(some)

Assessment

(go	to	Original	Resume)
(go	to	Improved	Resume)
Amit	actually	has	a	fantastic	background,	but	unfortunately	this	resume	doesn’t
let	his	experience	shine.	In	short,	he’s	focused	on	the	wrong	stuff.

Like	many	(or	most)	other	candidates,	he	focused	 too	much	on	responsibilities
and	 not	 enough	 on	 his	 accomplishments.	 His	 resume	 should	 be	 bulleted	 with
three	 to	 five	 bullets	 about	 the	 ways	 he’s	 had	 an	 impact	 on	 an	 organization.
Bullets	are	your	friend!

Additionally,	 it’s	 interesting	 that	 his	 resume	 lacks	projects.	He	 is	 a	 student,	 so
he’s	almost	surely	done	some	projects,	at	least	for	school	if	not	for	fun.	It’s	very
important	to	list	these.

If	we	turn	to	his	activities,	we’ll	see	a	mix	of	things.	Two	of	the	activities	aren’t
very	interesting	to	us;	he’s	unlikely	to	get	a	job	where	singing	and	soccer	matter.

One	 is	 very	 interesting,	 but	 it	 blends	 in.	 The	 “Upstart”	 activity	 might	 be
interesting,	but	it’s	impossible	to	say	because	Amit	hasn’t	said	what	it	is.

We’ll	revamp	his	resume	with	these	things	in	mind.	We	want	 to	trim	down	the
less	 important	 stuff	 (high	 school,	 sports,	 etc.)	 so	 his	 really	 amazing
accomplishments	stand	out.

New	and	Improved

(go	to	Original	Resume)
(go	to	Assessment)
EDUCATION

Stanford	University	(go	to	Original)
B.S.	in	Computer	Science	(2009	-	2013).	GPA:	3.65.
	
EXPERIENCE

Codesion	(go	to	Original)
Software	Engineering	Intern	(Summer	2011)
	

Implemented	 syncing	 tool	 to	 synchronize	 bug	 database	 with	 other	 major
bug	databases	to	reduce	switching	costs	for	new	users.	(Python.)
Extended	tool	to	synchronize	with	bug	reports	posted	on	the	largest	online
forums	by	using	search	APIs	and	parsing	reports.	 (Python,	Google	Search
API.)
Designed	new	algorithm	based	on	Alex	Chen’s	Weighted	Parsing	algorithm
to	 extract	metadata	 (operating	 systems,	milestones,	 etc.)	 from	bug	 reports
and	optimized	algorithm	by	85%.

Stanford	Law	School	(go	to	Original)
Research	Assistant	(Spring	2010	-	Summer	2010)
	

Proposed	and	built	system	to	automate	data	analysis	from	Michigan	HRS	to
determine	health	effects	of	retirement.
Co-published	 paper	 in	 Advanced	 Maching	 Learning	 (AML)	 journal
(Summer	2010)	with	Dr.	Gilad	Zalmon,	who	presented	findings	at	AML’s

annual	conference.

Stanford	Graduate	School	of	Business	(go	to	Original)
Research	Assistant,	Summer	2010
	

Collected	 information	 on	 publicly	 traded	 companies	 and	 helped	 with
building	comprehensive	industry	classification	standard.
Wrote	 Python	 script	 to	 extract	 data	 from	 online	 sources,	 reducing	 man-
hours	by	98%.

	

PROJECTS
	

EdU	 Projecto	 (iPhone	App,	 Independent):	 Project	 management	 app	 to
help	 CS	 students	 working	 on	 school	 projects	 manage	 timelines	 and
workflow.	 Downloaded	 1000+	 times	 in	 first	 three	 months	 with	 4.7	 /	 5.0
average	in	iOS	app	store.
Billboard	Processor	(C++,	Course	Project):	Program	which	extracts	text
from	photos	of	billboards.	Achieved	95%	accuracy,	exceeding	class	average
of	85%.

	

AWARDS	AND	ACTIVITIES
(go	to	Original)
	

Facebook	Summer	of	Hack	(2011):	Placed	1st	at	weekend-long	hackathon
out	of	47	teams.
ACM	Regionals	 (2010):	 Placed	 5th	 out	 of	 150+	 teams	 on	 competitions
involving	data	structures	and	algorithms.
Stanford	 Upstart,	 President	 (February	 2010	 -	 May	 2013):	 President	 of
semi-annual	 hackathon	with	more	 than	 100	 students	 participating.	Raised
$10,000	 in	 prizes	 from	 30	 sponsors,	 including	 Google,	 Microsoft,	 and
Facebook.

	

ADDITIONAL	INFORMATION
(go	to	Original)
	

Programming	Languages:	C,	Python,	Java,	SQL,	JavaScript	(some),	Ruby
(some),	Scheme	(some).
Other	Activities:	Stanford	Club	Soccer	Team,	Goalie	(January	2009	-	May
2013);	Stanford	A	Cappella	(January	2010	-	May	2013).

Adam	Kazwell
Adam	received	an	offer	from	GigaOM	with	this	resume.

(go	to	Assessment)
(go	to	Improved	Resume)
SUMMARY
(go	to	Improved)
Early	adopter	with	a	talent	for	recognizing	consumer	value.	Capable	of	creating
a	 product	 vision	 and	 analyzing	 business	 performance.	 Excels	 at	 recognizing
trends	 and	 opportunities	 in	 the	 consumer	 web	 industry,	 and	 passionate	 about
building	engaging	products	loved	by	millions	of	users.

AOL	(go	to	Improved)
Product	Manager	for	AIM.com	and	Games.com	(July	2011	-	March	2012
Joined	Jason	Shellen’s	team	to	help	with	the	re-launch	of	two	key	properties.	For
AIM,	was	focused	on	the	web	experience	and	helped	to	design	the	landing	page
and	 new	 user	 flows	 and	 also	 handled	 incoming	 user	 support	 across	 all
platforms.
	

Put	 together	welcome	 experience	 for	 new	 and	 returning	 users	 of	AIM	 to
introduce	them	to	completely	updated	product.	Separately,	used	UserVoice
to	collect,	aggregate,	and	respond	to	 incoming	feedback	-‐	determined	top
addressable	 issues	 and	 shared	 summarized	 results	 with	 the	 team.	 Also
began	work	on	creating	refined	metrics	dashboard.
Before	 joining	 the	 AIM	 team,	 helped	 to	 determine	 refresh	 strategy	 for
Games.com.	 Focused	 on	 tablet-driven	 design,	 the	 work	 was	 presented	 to
senior	leaders	of	the	AOL	consumer	product	group.

Hotwire	(go	to	Improved)
Product	Manager	(February	2009	-	July	2011)
Translated	new	features	into	detailed	business	requirements	and	communicated
their	 design	 and	 functionality	 throughout	 the	 organization.	 Worked	 across
multiple	 verticals,	 doing	 full-sized	 project	 and	 ad-hoc	 work,	 using	 primarily
waterfall	SDLC.
	

Worked	 with	 an	 in-house	 designer	 and	 3rd-party	 team	 to	 create	 the	 first
version	 of	 Hotwire’s	 mobile-optimized	 site.	 Led	 decisions	 around	 which
parts	 of	 the	 site	 should	 be	 included/removed	 and	 how	 options	 should	 be
presented.
Member	 of	 the	 launch	 team	 for	Hotwire’s	 international	 site,	 key	 strategic
project	 in	 2011.	 Helped	 to	 quickly	 establish	 a	 modular	 platform	 that
provided	core	functionality	while	also	being	easy	to	iterate	on.
As	part	of	cost	savings	exercise,	designed	templates	and	process	flows	for
delivering	 an	 automated	 and	 extensible	 solution	 for	 using	 Amazon’s
Mechanical	Turk	for	routine	data	collection	tasks.

LiveJournal	(go	to	Improved)
Product	Manager	(April	2008	-	January	2009)
Responsible	 for	 managing	 all	 parts	 of	 the	 product	 lifecycle,	 from	 ideation	 to
launch.	Wrote	 concept	docs	and	PRDs,	 created	 initial	mock-ups,	 and	gathered
metrics	before	and	after	product	launch.	Worked	with	developers	in	both	the	US
and	Russia	to	deliver	key	projects	that	helped	to	increase	engagement.
	

Reversed	 declining	 paid	 subscriber	 trend	 with	 redesign	 of	 account	 level
management	 -	making	 it	 easier	 for	users	 to	understand	what	 features	 they
would	be	getting	at	each	account	level.
Used	traffic	metrics	 to	determine	unique	product	positioning	opportunities
and	used	 insights	 to	attract	 additional	advertisers.	Researched	competitive
landscape	 and	 market	 opportunities	 while	 communicating	 insights	 on
product	trends	to	senior	management	via	PowerPoint	presentations.

Yahoo!	(go	to	Improved)
Business	Analyst	(November	2004	-	February	2008)
Provided	 reports	 and	 analysis	 on	 the	 overall	 performance	 of	 the	 Personals
product	 to	 the	 executive	 team	 on	 daily,	 weekly,	 and	 monthly	 basis.	 Worked
closely	with	the	product	team	to	define	and	track	the	impact	of	product	releases.
	

Created	 and	 maintained	 daily	 and	 weekly	 dashboards	 that	 tracked	 the
seasonal	 trends,	week-over-week,	 and	year-over-year	performance	of	over
100	product	and	referral	metrics.
Combined	knowledge	of	key	product	drivers	with	experience	as	user	of	the
Personals	 site	 to	present	 insights	 to	 the	product	 team	 that	 led	 to	 low-cost,

high-impact	feature	development.
Coordinated	 with	 Product	 team	 to	 define,	 track,	 and	 analyze	 benefits	 of
each	 release.	 Decided	 which	 metrics	 would	 most	 likely	 be	 impacted	 in
release	 and	 calculated	 baselines	 to	 confirm	 that	 their	 performance	 stayed
within	expected	ranges.

TXU	Energy	(go	to	Improved)
Marketing	Analyst	(December	2001	-	September	2004)
Started	 as	 technical	 writer	 and	 transitioned	 into	 an	 analyst	 role	 for	 the
Marketing	and	Business	Information	group.	Responsible	for	gathering	reporting
requirements	and	turning	them	into	technical	specifications.
	

Held	requirements	gathering	meetings	with	multiple	directors	and	drove	the
creation	 of	 standardized	 metrics	 and	 repeatable	 marketing	 performance
reports,	which	were	used	across	multiple	lines	of	business.
Used	 combination	 of	 SQL,	Crystal	Reports,	 and	MS	Access	 to	 pull	 data,
which	 was	 then	 cleansed	 and	 formatted	 in	 Excel	 by	 parsing	 and
concatenating	 fields,	 and	 summarized	 in	 pivot	 tables	 and	 charts.	 Created
macros	to	speed	up	any	repeatable	processes.

	

EDUCATION
(go	to	Improved)

Marquette	University,	August	1997	-	June	2001	(Milwaukee,	WI)
Bachelor	of	Science,	Major	in	Industrial	Engineering
	
ELSEWHERE
Active	 throughout	 the	 consumer	 web.	Most	 active	 on	 Twitter	 (@kaz),	 Quora,
and	Instagram.

Assessment

(go	to	Original)
(go	to	Improved	Resume)
Adam’s	 resume	 did	 fit	 on	 one	 page,	 but	 it	 was	 still	 very	 lengthy.	 Numerous

blocks	of	text	means	his	best	stuff	gets	skipped	over	in	just	a	brief	glance.

Additionally,	his	resume	lacked	specifics	and	clarity.

For	instance,	consider	his	work	experience	at	AOL.	There	was	something	about
a	“welcome	experience,”	but	it	was	unclear	what	that	meant	exactly.	After	that,
he	 said	 he	 used	UserVoice	 to	 collect	 feedback,	 shared	 results,	 began	work	 on
something,	 and	 helped	 with	 something	 else.	 None	 of	 these	 are	 really	 clear
accomplishments.

His	description	of	his	work	with	HotWire	has	similar	issues.	He	“worked	with”
some	people,	“helped	to”	do	something	else,	was	a	“member	of”	another	group,
and	participated	in	some	“exercise.”	These	lack	the	“umph”	they	could	have.

With	LiveJournal,	we	 see	 some	 clear	 accomplishments,	 but	 they	 could	 still	 be
better.	The	part	about	“reversed	declining	paid	subscriber	trend”	is	fantastic,	but
it	would	be	even	better	backed	up	with	numbers.	He	says	he	used	traffic	metrics
to	determine	positioning	and	attract	 advertisers.	 “Attracting	advertisers”	 is	 just
slipped	into	the	middle	of	the	bullet	and	isn’t	backed	up	with	numbers;	even	if	a
reader	noticed	it,	it	wouldn’t	be	very	credible.

Adam’s	 resume	 was	 by	 no	 means	 terrible;	 in	 fact,	 it	 was	 better	 than	 most
resumes.	It	still	could	be	so	much	better,	though.

Adam	 took	 this	 feedback	 and	 redid	 (and	 updated)	 his	 resume.	Here’s	what	 he
came	up	with.	Observe	how:
	

His	 AOL	 work	 is	 clearer	 (we	 can	 now	 understand	 what	 the	 welcome
experience	was)	and	more	focused	on	his	own	accomplishments.
His	HotWire	work	shows	more	leadership.	It’s	now	about	what	he	led,	not
who	he	worked	with.	He	also	now	has	numbers	to	back	up	how	he	reduced
costs.	We	also	now	learn	it	wasn’t	 just	an	“exercise.”	This	was	something
performed	with	a	meaningful	impact.
For	 LiveJournal,	 he’s	 provided	 numbers	 on	 how	 the	 subscriber	 trend
changed.	That	makes	them	more	credible	and	makes	someone	more	likely
to	 notice	 that	 in	 a	 quick	 skim.	 He’s	 now	 stated	 he	 attracted	 two	 new
advertisers	(although	this	might	be	even	stronger	if	he	could	say	how	much
money	 that	 brought	 in).	 He’s	 also	 added	 a	 new	 bullet	 about	 growing
connections.

His	summary	is	more	meaningful.	Anyone	can	claim	they	have	a	“talent	for
recognizing	 consumer	 value,”	 so	 that’s	 not	 very	 meaningful.	 The	 new
summary	feels	more	tangible.
He’s	kept	his	social	networking	usernames	 in.	This	can	be	a	nice	way	for
companies	to	learn	more	about	you.

His	 bullets	 are	 still	 a	 bit	 lengthy,	 but	 his	 resume	 has	 improved	 substantially.
Before,	we	would	walk	away	from	his	resume	with	a	general	impression	of	what
sorts	 of	 things	 he	 was	 responsible	 for.	 Now,	 we	 know	 that	 not	 only	 was	 he
responsible	 for	 some	 interesting	 things,	 but	 he’s	 also	 been	 successful.	 That’s
what	you	should	be	trying	to	do	in	your	resume.

New	and	Improved

(go	to	Original)
(go	to	Assessment)
SUMMARY

Consumer	 web	 product	 manager	 with	 5+	 years	 experience.	 Engineering
background.	 Worked	 as	 a	 business	 analyst	 before	 transitioning	 to	 a	 product
manager.	 Focused	 on	 finding	 the	 right	 questions	 to	 ask	 and	 assembling	 and
iterating	on	the	best	ideas	to	build	great	products.

EXPERIENCE

GigaOM	(go	to	Original)
Product	Manager
Responsible	 for	 the	 main	 parts	 of	 the	 Gigaom.com	 WordPress-powered	 blog,
including	the	front	page	and	story	pages.	Led	responsive	site	redesign.	Reported
on	and	analyzed	key	product	metrics	via	Google	Analytics	and	Chartbeat.	Drove
agile	development	via	Asana	and	Github.
	

Product	lead	for	the	GigaOM.com	responsive	redesign.	Set	overall	direction
for	 what	 was	 then	 Gigaom’s	 largest	 project	 to	 date.	 Post	 launch,	 mobile
traffic	 time-on-site	 doubled,	 and	visitor	 traffic	 at	 non-peak	 times	grew	by
20%.
Took	over	a	“Analyst	Connect”	product	that	had	been	stagnant	for	months

and	 created	 a	 clickable	 mock	 in	 Powerpoint.	 This	 allowed	 for	 improved
iteration	 amongst	 the	 team	 and	 led	 to	 a	 polished	 product	 getting	 shipped
one	month	later.
Adapted	WordPress’s	 post	 formats	 to	 deliver	 new	 customized	 post	 types.
This	 allowed	 authors	 to	 increase	 their	 output	 by	 25%,	 leading	 to	 record
unique	visitor	and	pageview	levels.

AOL	(AIM.com	&	Games.com)	(go	to	Original)
Product	Manager	(July	2012	-	Aug	2013)
Joined	Jason	Shellen’s	team	to	help	with	the	re-launch	of	two	key	properties.	For
AIM,	was	 focused	 on	 the	web	 experience	 and	 helped	 design	 the	 landing	 page
and	new	user	flows.	Also	handled	incoming	user	support	across	all	platforms.
	

Outlined	and	designed	welcome	experience	for	new	and	returning	users	of
AIM,	 introducing	 them	 to	 a	 completely	 re-imagined	 product	 -	 included
landing	page	layout	and	messaging	and	feature	walkthrough	post	login.
Managed	UserVoice	account	to	collect,	aggregate,	and	respond	to	feedback
from	 millions	 of	 users.	 Determined	 top	 addressable	 issues	 by	 analyzing
stats	and	led	team	to	resolve	these	issues.
Before	 and	 while	 working	 on	 the	 AIM	 team,	 helped	 create	 and
communicate	the	refresh	strategy	for	Games.com	-	including	getting	buy-in
from	key	executives.	Reshaped	roadmap	to	address	new	goals.

Hotwire	(go	to	Original)
Senior	Functional	Designer	(Feb	2009	-	Jul	2011)
Took	 rough	 feature	 requests	 and	 turned	 them	 into	 detailed	 business
requirements.	Determined	 the	 specifics	 of	 a	 feature’s	 design	 and	 functionality,
and	communicated	their	final	planned	state	throughout	the	organization.	Worked
across	 multiple	 product	 verticals,	 doing	 scheduled	 project	 and	 ad-hoc	 work,
using	primarily	waterfall	SDLC.
	

Guided	the	first	version	of	Hotwire’s	mobile-optimized	site	with	a	single	in-
house	 designer	 and	 third-party	 development	 team.	 Led	 decisions	 around
which	parts	of	the	site	should	be	included/removed	and	how	flow	should	be
optimized.
As	 a	member	 of	 the	 launch	 team	 for	Hotwire’s	 international	 site,	 defined
plan	 to	 build	 a	 modular	 platform	 to	 accelerate	 iterations	 so	 we	 could

quickly	adapt	after	entering	a	brand	new	market.
Reduced	 costs	 for	 routine	 data	 collection	 tasks	 by	 90%	 by	 creating
templates	and	process	flows	for	an	automated	and	extensible	solution	using
Amazon’s	Mechanical	Turk.

LiveJournal	(go	to	Original)
Product	Manager	(Apr	2008	-	Jan	2009)
Responsible	 for	 managing	 all	 parts	 of	 the	 product	 lifecycle,	 from	 ideation	 to
launch.	Wrote	 concept	 docs	 and	 PRDs,	 created	 initial	mockups,	 and	 gathered
metrics	before	and	after	product	launch.	Worked	with	developers	in	both	the	U.S.
and	Russia	to	deliver	key	projects	that	helped	increase	engagement.
	

Reversed	a	year-long	paid	subscriber	decline	from	-3%	month-to-month	to
+2%	 month-to-month	 with	 redesign	 of	 user	 account	 level	 management,
making	 it	 easier	 for	users	 to	understand	which	 features	 they	would	get	 at
each	account	level.
Navigated	complicated	privacy	settings	and	designed	a	plan	to	update	“Find
a	Friend”	functionality,	growing	new	user	connections	within	first	90	days
by	10%.
Analyzed	 traffic	metrics	 to	 discover	 and	 promote	 a	 collection	 of	 journals
that	attracted	two	new	advertisers.

Yahoo!	(go	to	Original)
Business	Analyst	(Nov	2004	-	Feb	2008)
Provided	 the	executive	 team	with	daily,	weekly,	monthly,	and	quarterly	 reports
and	 analysis	 on	 the	 overall	 performance	 of	 the	 Personals	 product.	 Worked
closely	with	the	product	team	to	define	and	track	the	impact	of	product	releases.
	

Created	and	maintained	daily	and	weekly	dashboards	tracking	the	seasonal
trends,	week-over-week,	and	year-over-year	performance	of	more	than	100
product	and	referral	metrics.
Led	 product	 team	 on	 selecting	 metrics	 to	 define,	 track,	 and	 analyze	 the
benefits	 of	 each	 release.	 Decided	 which	 metrics	 would	 most	 likely	 be
impacted	in	a	release	and	calculated	baselines	to	confirm	their	performance
stayed	within	acceptable	ranges.
Drove	development	of	low-cost,	high-impact	features	by	presenting	insights
on	key	product	drivers	to	product	team.

	

EDUCATION
(go	to	Original)

Marquette	University	(Milwaukee,	Wisconsin)
Bachelor	of	Science	in	Industrial	Engineering
	
ELSEWHERE
	

Active	throughout	the	consumer	web.
Specifically	on	Twitter	(@kaz),	Quora,	and	Instagram	(@kaz)
More:	about.me/kaz

Cover	Letters
Chapter	9

Cover	 letters	 are	 a	 mixed	 bag.	 Some	 companies	 care	 about	 them	 a	 lot,	 some
companies	don’t	want	them	at	all,	and	a	lot	of	companies	ask	for	them	but	don’t
put	much	emphasis	on	them.

A	 well-written	 cover	 letter	 can	 help	 connect	 your	 background	 with	 the	 job
requirements.	This	becomes	particularly	important	if	you	don’t	have	the	“ideal”
background.	It	can	be	your	way	to	show	the	reader	that,	although	it	doesn’t	look
like	it	at	first	glance,	you	have	the	right	background.

Elements	of	a	Good	PM	Cover	Letter
Most	cover	 letters	are	mediocre.	They	merely	restate	 the	candidate’s	resume	in
paragraph	form.	This	might	show	some	basic	writing	skills,	but	it	doesn’t	add	(or
subtract)	much.

A	good	PM	cover	letter	has	the	following	attributes:
	

Short:	Keep	your	cover	letters	to	around	200	-	250	words.	Lengthy	cover
letters	 are	 less	 likely	 to	 be	 read	 and	 likely	 contain	 a	 lot	 of	 unnecessary
detail.	Additionally,	being	too	verbose	will	reflect	poorly	on	you.
Shows	Passion:	An	ideal	PM	is	passionate	about	technology	and	about	the
industry.	This	passion	should	be	reflected	in	the	cover	letter.	Tell	the	reader
why	this	job	excites	you.
Demonstrates	 Skills:	 Look	 through	 the	 desired	 skillset	 of	 a	 PM	 –	 in
general	and	for	this	position	–	and	reflect	on	how	your	background	does	or
doesn’t	 match	 it.	 Pay	 particular	 attention	 to	 any	 skills	 you	 possess	 but
which	might	not	easily	be	shown	in	your	 resume;	use	your	cover	 letter	 to
demonstrate	these.
Matches	 the	 Company	 Culture:	 Does	 the	 company	 prize	 “business
people,”	or	does	it	like	to	show	a	bit	more	flair?	Reflect	this	in	your	cover
letter.	 A	 fun,	 quirky	 company	 could	 merit	 a	 fun,	 quirky	 cover	 letter	 –
particularly	if	your	resume	otherwise	reads	like	a	boring	business	person’s.
Well	 Written:	 Your	 cover	 letter	 is	 a	 writing	 sample	 and	 it	 should	 be
handled	as	 such.	This	means,	of	course,	no	 spelling	or	grammar	errors.	 It
should	also	be	succinct	rather	than	full	of	flowery,	descriptive	prose.	Keep
an	eye	on	your	sentences	and	be	sure	 they	don’t	get	 too	long	or	complex.
Vary	between	longer	sentences	and	shorter	sentences.

Ultimately,	 your	 cover	 letter	 is	 a	 way	 to	 connect	 your	 background	 with	 the
“perfect”	PM	fit.	Use	it	to	do	that.

The	Cover	Letter	Template
A	traditional	cover	letter	fits	a	fairly	standard	template.	The	exact	order	of	these
paragraphs	 (namely	 the	 second	and	 third)	can	be	 rearranged,	but	a	good	cover
letter	typically	includes	these	elements.

Addressing	the	Reader
A	simple	“Dear	__________”	works	fine.	 If	you	know	the	name	of	 the	person
you’re	addressing,	use	it.	Never,	ever	say	“Dear	Sir”	unless	you	know	for	a	fact
the	reader	is	male.	That	is	an	excellent	way	to	get	rejected.

Dear	_______________,

Opening	Paragraph
In	 the	 first	 paragraph,	briefly	 introduce	who	you	are	 and	what	position	you’re
seeking.	There’s	no	need	 to	 state	your	name;	 that	will	 be	 in	your	 signature.	 If
you	 have	 a	 personal	 connection	 with	 the	 company	 or	 an	 interesting	 way	 you
heard	about	the	position,	this	is	a	good	place	to	mention	it.

I	recently	attended	the	WYSIWYG	Developer	Conference,	and	I	was	thrilled
when	ChattyCha’s	CEO	mentioned	an	opening	 for	 a	 product	manager	on
the	API	 team.	As	a	developer-turned-PM,	 I	believe	 this	position	would	be
an	excellent	fit	for	my	background	and	interests.

Second	Paragraph
Here	you	discuss	how	your	background	makes	you	a	good	 fit	 for	 the	position.
This	 should	 not	 be	 a	 summary	 of	 your	 roles;	 that’s	 what	 your	 resume	 is	 for.
Rather,	 what	 this	 paragraph	 does	 is	 connect	 your	 skills	 and	 accomplishments
with	what	the	company	is	seeking.

This	 paragraph	 should	 highlight	 your	 soft	 skills	 and	 back	 them	 up	 with
accomplishments.

I	 am	a	 deeply	 technical	 person	who	 loves	motivating	 others	 to	 achieve	 a
difficult	goal.	During	my	 first	year	as	a	developer	at	Microsoft,	 I	 found	a
way	to	resolve	a	long-standing	issue	with	a	key	framework	by	leveraging	a
new	technology.	I	recruited	and	trained	a	team	of	three	engineers,	and	later

became	 dev	 lead	 on	 a	 related	 feature.	 I	 took	 this	 passion	 for	 problem
solving	 to	 Waffle,	 an	 enterprise-security	 startup,	 where	 I	 successfully
launched	the	company’s	flagship	feature	–	one	that	many	thought	would	fail
due	to	its	complexity.

Third	Paragraph
Next,	you	explain	why	you’re	excited	about	 this	 role.	You	don’t	want	 to	make
this	paragraph	too	long,	as	the	prior	paragraph	is	more	important.	You	just	want
to	 show	you	 care	 about	 this	 position	 and	 it’s	 not	 just	 another	 company	you’re
applying	to.

I	 am	 excited	 about	 the	 challenge	 of	 ChattyCha’s	 mission.	 I	 love	 deep
technical	 challenges.	The	developer	 tools	 space	 is	particularly	 interesting
to	 me,	 having	 experienced	 the	 frustration	 of	 inadequate	 tools	 for	 my
personal	 and	 professional	 coding	 projects.	 I	 am	 eager	 to	 help	 make	 this
space	better.

Fourth	Paragraph
The	 final	 paragraph	 is	 very	 short	 and	 just	 concludes	 the	 letter	 with	 a	 “thank
you.”

Thank	you	for	your	consideration.	I	look	forward	to	hearing	from	you	about
this	opportunity.

Sincerely,

Your	Name

A	Great	Cover	Letter
Following	the	above	template	won’t	win	you	any	awards,	but	it	will	basically	get
the	job	done.	The	job,	of	course,	is	to	get	someone	to	consider	your	resume	(or	at
least	not	rule	it	out).

On	rare	occasions,	a	cover	letter	can	substantially	increase	a	candidate’s	odds.

Consider	this	cover	letter	for	a	candidate	at	an	education	startup:

As	you	might	notice	from	my	2.7	GPA,	academics	have	never	really	been	my
thing.	 But	 I	 love	 learning,	 and	 it’s	 the	 delta	 between	 academics	 and
learning	that	makes	me	so	excited	about	FusionEd.

I	was	only	a	so-so	student.	School’s	grades-driven	approach	didn’t	allow	me
to	 spend	 less	 time	 on	 the	 subjects	 I	 hated	 in	 favor	 of	 those	 I	 loved.	And,
even	if	I	wanted	to	explore	a	topic	more	deeply,	I	lacked	the	resources	and
structure	to	do	so.	FusionEd’s	mission	of	child-driven	education	will	tackle
this	issue	and	I	want	to	be	a	part	of	that.

Academics	 aside,	 I	 truly	 love	 learning,	 and	 especially	 learning	 about
technology.	Last	year,	I	taught	myself	to	code	and	I’ve	since	entered	several
hackathons.	In	the	latest	one,	I	was	proud	to	be	the	only	single-person	team
to	receive	an	award.	You	can	see	some	of	my	projects	on	my	GitHub	profile,
including	one	targeted	at	students.

In	my	professional	life	as	a	product	manager	with	Colapa,	I	lead	a	team	of
six	 developers.	 My	 day-to-day	 work	 includes	 everything	 from	 feature
design,	to	market	research,	to	simple	coding.	I	wear	many	hats,	and	it’s	one
of	 the	 things	 I	 love	 about	 the	 role.	One	 of	my	 proudest	 accomplishments
though	 was	 finding	 a	 way	 to	 reposition	 our	 product	 to	 capture	 the
enterprise	market.	This	now	represents	15%	of	revenue.

Most	recently,	I	worked	on	developing	an	API	for	Colapa.	I	understand	that
FusionEd	is	heading	in	a	similar	direction,	and	I	am	excited	to	take	on	this
challenge	 again.	 I	 am	 confident	 my	 love	 for	 technology,	 learning,	 and
leadership	–	plus	my	dislike	for	the	status	quo	in	education	–	will	enable	me
to	make	an	impact	on	FusionEd.

This	 wouldn’t	 necessarily	 be	 a	 great	 cover	 letter	 for	 all	 companies,	 but	 it’s	 a

great	cover	letter	for	the	right	company.	It’s	honest	and	sincere,	with	just	a	little
bit	 of	 a	 quirky	 punch	 in	 the	 beginning.	 The	 tone	 will	 work	 beautifully	 for	 a
smaller	startup	that	cares	deeply	about	its	mission	to	transform	education.

On	the	skills	side,	this	candidate	has	shown:
	

Initiative	(by	learning	to	code).
Passion	 for	 technology	 (by	 learning	 to	 code	 and	 by	 competing	 in
hackathons).
A	 willingness	 to	 take	 risks	 (by	 competing	 in	 hackathons,	 despite	 being
vastly	under-qualified).
Intelligence	(by	winning	hackathons).
Leadership	(by	repositioning	the	current	product).
A	 love	 for	 entrepreneurship	 (by	being	 at	 a	 startup	 and	by	 “wearing	many
hats”).
Successfulness	(by	successfully	repositioning	the	product).

This	 is	 the	way	you	should	dissect	your	cover	 letter.	Think	carefully	about	 the
role	 each	 sentence	 plays.	What	 skills	 and	 attributes	 are	 demonstrated	 in	 your
cover	 letter?	 Remember	 that	 your	 cover	 letter	 does	 not	 need	 to	 be	 a
comprehensive	list	of	all	your	experience;	your	resume	is	attached,	too.

Company	Research
Chapter	10

Knowing	the	ins	and	outs	of	a	company	can	impress	your	interviewer.	You’ll	be
able	to	ask	more	interesting	questions,	give	more	insightful	answers,	and	show
more	excitement	for	the	role.

Additionally,	 sometimes	 interviewers	will	 forget	 that	 not	 everyone	 outside	 the
company	knows	the	products	as	well	as	they	do.	They	might	judge	you	harshly
for	being	unaware	of	some	seemingly	“obvious”	details,	or	you	might	do	poorly
on	a	question	because	you	didn’t	have	some	bit	of	background	knowledge.

This	section	will	outline	what	you	should	know	about	the	company.

The	Product
You	should	understand	what	the	company	is	doing	at	a	deep	level.	A	cursory	“it
makes	home	automation	tools”	level	of	understanding	is	not	sufficient.	Knowing
the	following	information	will	help	you	stand	out:
	

Products:	 What	 is	 the	 array	 of	 products	 or	 features	 that	 the	 company
creates?	How	do	the	products	fit	with	each	other?
Competitors:	 Who	 are	 the	 competitors?	 How	 does	 the	 company
differentiate	itself	from	them?
Customers/Market:	What	is	the	target	market	for	the	company?	Are	there
any	 secondary	markets	 right	now	or	 that	you	would	 suggest	 the	company
enter?
Revenue:	How	does	 the	company	make	money?	How	would	you	suggest
the	company	make	more	money?	 If	 it	doesn’t	make	money,	what	 revenue
strategies	would	you	want	to	explore?
Love	and	Hate:	How	do	customers	feel	about	 the	product?	What	do	they
love	or	hate?	What	are	the	most	common	complaints	and	issues?
Metrics:	If	possible,	try	to	learn	about	the	company’s	key	metrics.	Finding
exact	numbers	might	be	difficult,	but	you	can	at	least	get	an	understanding
of	which	metrics	 they’re	doing	well	on	and	which	ones	 they’re	struggling
with.	How	many	users	does	it	have?	What	is	its	conversion	rate?	What	is	its
growth	rate?
News	and	Rumors:	Have	there	been	any	interesting	news	reports	about	the
company?	What	is	 the	company	rumored	to	do?	Don’t	 just	read	this	stuff.
Formulate	an	opinion	on	it.

To	learn	this	information,	check	out	the	company	website,	their	About	Us	pages,
their	 blog,	 their	 job	 sites,	 their	 SEC	 filings,	 newspaper	 articles,	 blog	 articles,
their	support	pages,	and	whatever	pops	up	in	online	searches.

You	 should	 also	 use	 the	 product	 yourself,	 and	 you	 should	 use	 it	 extensively
across	multiple	user	types.	If	it’s	a	product	with	free	and	paying	users,	try	to	use
it	in	both	scenarios	(if	possible).	Think	about	what	parts	you	enjoyed	and	what
you	didn’t.	Pay	particularly	close	attention	 to	anything	 that	would	have	 turned
you	away	if	you	weren’t	“forced”	to	check	it	out.

The	Strategy
You	 should	 know	not	 only	what	 the	 company	 is	 doing,	 but	why	 it	 is	 doing	 it.
Knowing	the	“why”	will	help	your	answers	fit	the	company’s	view	of	the	world.
For	example,	if	the	company	cares	about	“changing	the	world,”	then	you	should
mix	that	sort	of	passion	into	your	answers.	Or	if	the	company	is	passionate	about
expanding	 worldwide,	 you	 can	 talk	 about	 global	 expansion	 and
internationalization	issues.

Knowing	the	“why”	means	understanding	the	following:
	

Mission:	Look	up	the	company’s	mission	statement.	How	does	it	live	up	to
this	mission?	Be	specific.
Strategy:	 What	 do	 you	 think	 is	 the	 company’s	 strategy?	 Are	 there	 any
missteps	with	respect	to	that?
Strengths:	What	are	 the	product’s	selling	points?	How	does	 the	company
leverage	 those?	What	 about	 the	 company	 or	 its	 products	 has	 enabled	 its
success?
Weaknesses:	What	are	the	major	issues	with	the	company	and	its	products?
How	 should	 the	 company	 address	 those	 weaknesses,	 or	 should	 they	 just
accept	them?
Challenges:	What	 are	 the	biggest	 challenges	 for	 the	company	 right	now?
How	 do	 you	 see	 them	 addressing	 those?	 What	 challenges	 have	 they
overcome?
Opportunities:	 Is	 there	 anything	 on	 the	 horizon	 (with	 technology	 or	 in
their	industry)	that	might	create	an	opportunity	for	the	company?
Threats:	Similarly,	 is	 there	anything	on	 the	horizon	which	might	 threaten
the	company’s	success?
Future:	What	do	you	think	the	future	holds	for	this	company?	Think	about
any	new	products	or	features	that	would	be	a	natural	fit.

These	 topics	are	 just	 to	get	you	started.	Your	 responses	 to	 the	above	questions
might	well	overlap,	and	that’s	okay.	If	you	can	make	a	compelling	argument	for
why	the	product	will	(or	won’t)	succeed	and	predict	arguments	to	the	contrary,
you’re	probably	in	good	shape.

The	Culture
Some	candidates	get	 so	 focused	on	 the	product	 that	 they	 forget	 it’s	 the	people
who	make	 the	 company	 (which	 in	 turn	makes	 the	 product).	 Or	 they	 do	 some
quick	 “online	 stalking”	 of	 their	 interviewers	 but	 don’t	 think	 about	 the	 aspects
that	really	matter.
	

Culture:	What	 is	 the	company’s	culture?	The	company’s	 job	pages	might
discuss	this	a	little,	but	that’s	obviously	going	to	be	biased	toward	the	image
they	want	 to	 project.	 Look	 online	 for	 reports	 of	what	 candidates,	 current
employees,	and	former	employees	say	about	working	there.
Values:	What	 does	 the	 company	 value?	 By	 “values,”	 we	mean	 anything
that’s	 important	 to	 them,	 explicitly	 or	 implicitly.	 To	 understand	 this,	 read
interviews	 with	 the	 founders	 and	 think	 about	 their	 culture	 and	 products.
Values	might	include	aspects	such	as	moving	fast	(Facebook)	or	“don’t	be
evil”	(Google).
History:	How	long	has	the	company	been	around?	How	did	the	company
get	 started?	Have	 they	 been	 doing	what	 they	 set	 out	 to	 do,	 or	 have	 they
pivoted?
Interviewers:	 If	you	know	who	will	be	 interviewing	you,	you	can	search
for	 more	 information	 about	 them	 online.	 Don’t	 be	 creepy,	 though.
Congratulating	 an	 interviewer	 on	 her	 recent	marriage	 comes	 off	 “stalker-
ish”;	it’s	best	just	not	to	mention	things	like	that.
Key	 People:	 Who	 founded	 the	 company?	 What	 were	 they	 doing
previously?	 If	 it’s	 a	 startup,	 who	 funded	 the	 company?	 Are	 there	 well-
known	 people	 at	 the	 company?	 These	 aren’t	 just	 “facts”	 to	 know;	 you
should	 think	 about	 them.	 How	 does	 the	 background	 of	 the	 founders	 and
other	key	people	affect	the	company?
Organization:	How	big	is	 the	company?	How	is	 the	company	organized?
Does	everyone	basically	report	to	the	CEO	or	is	there	a	strict	hierarchy?

The	point	of	 this	knowledge	is	not	 to	whip	it	out	 to	impress	the	interviewer	(it
probably	won’t),	but	to	use	this	information	to	get	a	feel	for	what	the	company	is
really	 like.	 You	 want	 to	 make	 sure	 a	 company	 is	 a	 good	 fit	 for	 you,	 too.
Sometimes	candidates	are	so	focused	on	landing	the	job	that	they	forget	to	make
sure	the	job	is	really	right	for	them.

This	 information	 has	 another	 benefit,	 too:	 it	 can	 help	 shape	 your	 responses	 to
behavioral	 questions,	 like	 how	 you	 influence	 teammates	 or	 how	 you	 would
implement	a	decision.

If	you	can,	try	to	fit	all	the	little	learnings	together.	That	is,	match	the	culture	to
the	 strategy	 and	 other	 parts	 of	 the	 company.	 For	 example,	 Amazon	 has	 a
reputation	for	being	very	money	and	metric	driven,	as	well	as	very	frugal.	Is	this
because	Amazon	is	a	relatively	low-margin	business?	Is	it	because	Amazon	was
not	profitable	for	a	long	time?	How	does	this	affect	its	strategy?

The	Role
Finally,	 you	 should	 know	 how	 you	 fit	 into	 the	 company.	 This	 entails	 the
following:
	

The	Role:	 You	 should	 understand	 the	 role	 of	 a	 product	 manager	 at	 this
company.	How	technical	is	the	role?	How	do	decisions	get	made?
Idea	 Generation:	 Where	 do	 ideas	 come	 from?	 Some	 companies	 are
“bottom	 up,”	 with	 ideas	 coming	 from	 developers	 and	 product	 managers
who	then	convince	the	executives	of	their	vision.	Other	companies	are	“top
down,”	 with	 executives	 supplying	 long-term	 vision	 for	 the	 company	 and
PMs	being	tasked	with	implementing	that	vision.
Practical	vs.	Crazy:	While	all	companies	have	some	appreciation	 for	 the
practical	 realities	 and	 some	 for	 the	 crazy	 off-the-wall	 ideas,	 each	 firm
strikes	 its	 own	 balance	 between	 the	 two.	 Understanding	 if	 the	 company
loves	bold	 ideas	or	prefers	more	 incremental	 improvements	will	help	you
understand	what	sorts	of	ideas	you	could	pitch.
Things	to	Change:	Walk	in	with	some	ideas	for	what	you’d	want	to	change
or	 implement	at	 the	company.	An	understanding	of	major	user	complaints
will	give	you	a	good	place	to	start.
Why	You	Want	the	Job:	You	should	be	able	 to	speak	passionately	about
why	 you	 are	 excited	 about	 the	 company	 and	 why	 are	 you	 excited	 about
product	management.
Why	You	Would	Be	a	Good	Fit:	Similarly,	you	should	be	able	to	make	a
compelling	 pitch	 for	 how	 the	 role	matches	 your	 skillset	 and	 background.
The	 job	 description	 is	 a	 good	 place	 to	 start,	 but	 think	 beyond	 this.	What
challenges	 does	 the	 company	 face	 and	 how	well	 suited	 are	 you	 to	 tackle
them?

An	 interview	 is	 a	 good	 place	 to	 get	 a	 deeper	 understanding	 of	 some	 of	 these
aspects,	but	you	shouldn’t	rely	on	this.	You’ll	want	to	walk	in	with	as	good	an
understanding	as	possible.

The	Questions
With	 all	 the	 research	 behind	 you,	 it’s	 wise	 to	walk	 into	 an	 interview	 prepped
with	questions	to	ask	the	interviewer.	Almost	every	interviewer	will	give	you	an
opportunity	 to	ask	 them	questions,	and	you	don’t	want	 to	enter	 that	“awkward
silence”	phase.

You	can	think	about	questions	as	falling	into	a	few	major	categories:
	

Useful	Questions:	The	“Do	you	have	any	questions	for	me?”	moment	is,	of
course,	 a	 useful	 time	 to	 get	 some	 things	 answered	 about	 the	 role	 or
company.	It	can	be	particularly	valuable	to	ask	a	question	where	the	answer
might	 vary	 across	 interviewers.	 For	 example,	 “What	 do	 you	 find	 most
challenging	about	being	a	PM	here?”
Passion	Questions:	 Some	 questions	 show	 a	 passion	 for	 the	 company	 or
role,	simply	because	you	had	the	background	or	desire	to	ask	the	question.
For	instance,	asking	a	company	why	they	dropped	their	initial	monetization
strategy	shows	you’ve	researched	the	company,	and	asking	a	question	such
as,	“Where	do	you	see	the	company	going	in	five	years?”	shows	the	drive
to	understand	the	company.
Expertise	Questions:	 Other	 questions	 do	 more	 than	 just	 show	 research;
they	can	show	a	deep	understand	of	the	company’s	business.	For	example,
the	following	question	shows	an	understanding	of	international	markets:	“If
it’s	 something	 you	 can	 share,	 I’d	 love	 to	 learn	 more	 about	 why	 your
company	decided	to	enter	Europe	before	Asia.	Given	the	regulatory	issues
in	Europe	and	the	smaller	market	size,	Asia	would	seem	like	a	more	natural
pick.”

In	 addition	 to	 these	 general	 types	 of	 questions,	 some	 questions	 work	 well	 in
many	interviews.	Some	good	questions	include:
	

What’s	 a	 typical	 day	 like	 for	 you?	How	much	of	 your	 day	do	 you	 spend
writing	specs	versus	working	with	designers	versus	doing	other	activities?
How	has	the	role	of	a	PM	changed?	How	do	you	see	it	changing?
What	 is	 the	 balance	 between	 PMs,	 developers,	 and	 designers?	How	 does
decision	making	work?
What’s	your	favorite	part	about	working	here?

What	would	make	someone	the	ideal	PM	candidate	for	you?
What	do	you	think	makes	this	company’s	culture	unique?
What	do	you	find	most	challenging	about	being	a	PM	here?
Who	do	you	work	with	on	your	core	team	versus	extended	team?

Don’t	 underestimate	 the	 importance	 of	 questions	 for	 your	 interviewer.	 Many
candidates	find	their	interviewer	leaves	a	ton	of	time	for	questions,	and	they	just
don’t	have	enough	questions	to	ask	the	interviewer.

What	Not	to	Ask
Do	not	ask	questions	that	are:
	

Red	 flags:	 For	 example,	 asking	 about	 vacation	 time	 in	 an	 interview	 can
come	 off	 the	 wrong	 way.	 Just	 how	 much	 vacation	 are	 you	 planning	 on
taking?
Obvious:	 Asking	 a	 question	 with	 obvious	 answers	 suggests	 you	 haven’t
done	your	homework	and	you	may	not	be	very	serious	about	the	role.	For
example,	a	question	such	as,	“What’s	the	monetization	strategy?”	might,	in
many	cases,	reveal	a	lack	of	preparation.
Critical:	A	question	like	“Why	didn’t	you	do	_____?”	can	sometimes	come
off	 as	 negative,	 or	 as	 an	 I-want-to-prove-I’m-smart	 question.	 Such
questions	can	also	just	be	annoying,	particularly	when	the	answer	is	likely
to	be	some	version	of	“too	many	features,	too	little	time.”

If	you’re	worried	a	question	might	reflect	poorly	on	you,	you	can	always	ask	it
after	you	have	an	offer.

Define	Yourself	
Chapter	11

There	is	a	huge	range	of	potential	questions,	but	these	six	questions	come	up	so
often	 that	 it’s	 worth	 spending	 some	 special	 time	 on	 them.	 For	 each	 of	 these
questions,	you	 should	have	an	answer	prepared.	This	means	not	only	knowing
what	you’ll	say,	but	actually	rehearsing	the	answers.

“Tell	Me	About	Yourself”	(The	Pitch)
Many	interviewers	will	kick	off	the	session	with	an	open-ended	“Tell	me	about
yourself.”	question.	In	fact,	over	the	course	of	a	full	day	of	interviews,	you	can
almost	guarantee	you’ll	get	 this	question.	You	should	be	prepared	with	a	 solid
pitch	about	your	background,	accomplishments,	and	interests.

This	is	not	a	time	to	just	read	off	your	resume	or	blab	about	your	personal	life.
Rather,	 pick	 out	 a	 few	 of	 the	 key	 things	 you’d	 like	 your	 interviewer	 to	 know
about	you.	This	is	an	opportunity	to	connect	your	experience	with	the	job	you’re
interviewing	for.

Consider	this	pitch:

Interviewer:	Tell	me	a	bit	about	yourself.

Candidate:

Sure,	I’d	love	to.

I’m	currently	a	PM	with	MapSign,	where	I	have	been	for	the	last	two	years.

I	got	into	product	management	by	accident,	but	found	that	I	loved	working
with	 customers.	A	 lot	 of	 people	 see	 technology	as	 forcing	 complexity	 into
their	 lives,	 but	 I	 don’t	 think	 it	 has	 to	 be	 that	 way.	 I	 like	 listening	 to
customers,	 understanding	 exactly	 what	 their	 issues	 are,	 and	 figuring	 out
how	technology	can	simplify	their	lives.

After	I	graduated	from	college,	I	joined	a	small	startup	called	MealRight	as
a	software	engineer.	We	were	doing	okay,	but	it	just	didn’t	look	like	we	were
getting	that	hockey	stick	growth	that	everyone	talks	about.

I	 knew	 a	 bit	 about	 the	 restaurant	 industry	 from	 my	 family’s	 restaurant
growing	 up,	 and	 I	 proposed	 pivoting	 to	 focus	 on	 giving	 restaurants	more
visibility	 into	 their	 suppliers.	 I	 talked	 with	 a	 bunch	 of	 restaurants	 to
validate	this	problem,	and	successfully	convinced	the	team	to	shift	gears.

I	 stepped	 in	 as	 product	 manager	 where	 I	 stayed	 for	 several	 years,
eventually	leading	a	team	of	four	PMs.

I’m	 currently	 a	 PM	 with	 MapSign,	 where	 I	 manage	 the	 personalization
features.

I	recently	launched	a	feature	which	allows	users	to	create	their	own	maps.
This	was	actually	created	on	a	whim	for	a	hackathon	I	participated	in,	but
it	turned	out	that	users	really	loved	this.	It	allowed	them	to	tell	a	“story.”
Whereas	previously	people	used	our	product	mostly	privately,	now	people
were	sharing	their	maps	with	family	and	friends.	This	has	resulted	in	about
a	15%	increase	in	paying	users.

I	can	go	into	more	detail	about	my	work	at	MapSign	if	you’d	like.

Outside	of	work,	 I	do	a	bit	of	 coding	 for	 fun,	participating	 in	hackathons
like	the	one	I	just	mentioned.	I	also	run	a	blog	focused	on	the	New	York	City
music	scene.	I	manage	a	team	of	ten	writers—mostly	college	students,	who
are	happy	to	write	for	free.	We	get	about	200,000	visits	per	month.

I’m	looking	now	for	a	role	at	an	early-stage	company	where	I’ll	be	able	to
take	 a	 single	 product	 from	 conception	 through	 to	 launch.	 I	 think	 my
experience	as	a	developer	and	as	a	PM	who	works	cross-functionally	will
give	 me	 the	 background	 to	 work	 with,	 and	 even	 take	 on	 some	 of	 the
responsibilities	of,	several	other	roles.	That’s	a	lot	of	what	interested	me	in
this	role;	it’s	at	the	perfect	time	for	me	to	dive	in,	and	it’s	so	closely	related
to	the	personalization	work	I’m	doing	right	now.

In	this	pitch,	the	candidate	has	walked	the	interviewer	through	his	background,
while	 sprinkling	 the	 story	with	 key	 accomplishments,	 connecting	 the	 different
accomplishments	together,	and	prompting	the	interviewer	to	ask	more	about	the
areas	where	he	shined.	He’s	formed	a	cohesive	story	about	what	he’s	good	at	and
why	he	loves	being	a	PM.

Design	 your	 pitch	 by	 thinking	 about	 what	 you	 want	 the	 interviewer	 to	 know
about	 your	 background,	 experiences,	 and	 interests.	 Where	 possible,	 connect
elements	of	your	pitch	to	what	the	company	is	looking	for,	whether	that’s	aspects
of	the	PM	role	specifically	or	the	company’s	product.

Additionally,	keep	in	mind	these	dos	and	don’ts.
	

Do	be	mindful	of	how	long	you	speak.	Your	interviewer	will	be	judging	you
in	part	on	your	communication	skills,	and	no	one	 likes	a	 rambler.	A	good

rule	of	thumb	is	to	speak	one	to	two	times	as	long	as	your	interviewer	did,
if	she	introduced	herself.	Otherwise,	about	two	minutes	is	a	good	guide.
Do	highlight	the	most	interesting	or	relevant	parts	of	your	jobs.	This	is	your
opportunity	to	sell	yourself.
Don’t	just	list	off	your	accomplishments.	That	can	come	off	as	too	boastful,
and	your	interviewer	might	even	get	lost	in	all	the	details.	Your	pitch	should
be	a	cohesive	story	about	how	you	got	from	then	to	now.	It	should	connect
the	different	elements	of	your	life	and	offer	context	for	why	you’re	a	good
fit	for	this	role.
Don’t	 get	 overly	 technical.	 It’s	 great	 if	 you	 have	 some	 very	 technical
experience,	 but	 your	 interviewer	 wants	 to	 hear	 in	 more	 straightforward
language	 why	 that	 work	 was	 important.	 After	 all,	 as	 a	 PM,	 you	 need	 to
communicate	with	both	technical	and	non-technical	people.
Do	discuss	your	“extracurricular”	activities,	where	relevant.	For	example,	if
you’re	applying	 to	a	 fitness-related	 startup	and	you’ve	 started	a	marathon
training	group,	 that’s	 a	 good	 thing	 to	mention.	 It	 shows	 a	 passion	 for	 the
space,	and	possibly	even	expertise	in	it.	Even	when	the	extracurriculars	are
not	directly	applicable,	they	can	often	show	initiative	and	leadership.
Do	practice.	It’s	almost	a	guarantee	you’ll	be	asked	for	your	“pitch,”	so	it’s
silly	 to	 be	 unprepared.	 Grab	 a	 friend	 and	 let	 them	 hear	 your	 pitch.	 How
does	 it	 sound	 to	 them?	 You	 might	 even	 want	 to	 record	 your	 pitch	 for
yourself	so	you	can	hear	how	it	sounds.
Don’t	speak	too	abstractly.	Instead	of	just	saying	you	did	customer	research
and	wrote	specs,	talk	about	an	example	of	something	important	you	learned
and	how	you	changed	the	product	design	based	on	that.
Don’t	be	boring	and	just	rattle	off	a	bunch	of	facts	about	yourself.	Weave
your	pitch	into	a	mini-story.
Do	be	passionate	and	proud	of	your	past	work.

You	should	look	forward	to	 this	question.	This	 is	your	opportunity	 to	sell	your
interviewer	 on	 why	 you’re	 the	 perfect	 candidate,	 and	 you’ll	 be	 perfectly
prepared	to	do	so.

“Why	do	you	want	to	work	here?”
When	 I	 interviewed	 candidates	 at	 Google,	 I	 would	 ask	 them	 why	 they	 were
interested	in	the	position.	Many	answers	would	be	something	along	the	lines	of:
	

Because	I’ve	heard	Google	has	a	great	culture.
Because	Google	has	changed	the	world.
Because	 so	 many	 people	 use	 Google	 products,	 and	 I	 want	 to	 work	 on
something	my	family	and	friends	have	used.

These	 answers	 are	 okay,	 but	 they’re	 just	 okay.	 You	 won’t	 win	 any	 points
delivering	 an	 answer	 like	 that.	Why?	Because	 you	 haven’t	 given	me	 anything
that	makes	me	want	to	hire	you	more.

An	ideal	answer	will	sell	yourself	in	some	way.	Consider	integrating	one	or	more
of	these	aspects	into	your	answer:
	

Company	Research:	You	can	use	your	answer	 to	 show	 that	you’ve	done
research	about	the	company	or	position.	Doing	research	shows	passion	for
the	 position,	 and	 passionate	 employees	 make	 good	 employees.	 For
example,	you	might	say,	“What	piqued	my	interest	was	a	presentation	your
lead	 UI	 designer	 made	 about	 the	 different	 methods	 you	 use	 for	 data
analysis,	 and	 how	 this	 helps	 you	 build	 a	 better	 product.	 I’m	 very
quantitative,	so	I	really	want	to	work	for	such	a	data-driven	company.”
Relevant	 Experience:	 Your	 answer	 can	 actually	 communicate	 to	 the
interviewer	 directly	 that	 you	 have	 relevant	 skills	 or	 experience.	 For
example,	you	could	say	something	like	this:	“I’m	really	interested	in	testing
tools.	 For	 my	 senior	 project	 in	 college,	 I	 built	 an	 automated	 way	 of
detecting	 certain	 types	 of	 errors.	 I	 learned	 a	 ton	 about	 different	 types	 of
website	errors	and	ways	to	detect	them.	I	was	really	intrigued	by	how	much
impact	automated	testing	can	do,	if	done	well—but	I	also	learned	just	how
challenging	 it	 is	 to	 do	 well.	 I’m	 excited	 to	 get	 back	 into	 this	 space	 and
leverage	what	I	learned.”
Passion:	It	can	be	valuable	to	directly	communicate	passion	for	a	position.
This	is	especially	true	for	startups	that	are	focused	on	some	sort	of	“greater
good”	for	the	world.	For	example,	for	an	education-related	startup,	it	could
be	 good	 to	 have	 an	 explanation	 like	 this:	 “I	 grew	 up	 fairly	 poor	 and

attended	pretty	mediocre	elementary	schools.	What	helped	me	excel	beyond
my	 peers	 and	 win	 a	 scholarship	 to	 a	 top	 high	 school	 and	 college	 was
seeking	 out	 extra	 resources.	 At	 that	 time,	 this	 meant	 public	 libraries,
mentors,	 and	 a	 small	 number	 of	 websites.	 I	 think	 your	 company	 has	 the
potential	 to	bring	 these	online	 resources	 to	a	much	broader	community	of
disadvantaged	 students.	 This	was	 so	meaningful	 to	me	 growing	 up	 that	 I
really	want	to	be	a	part	of	that	now.”

In	general,	big	companies	will	be	less	impressed	by	your	having	researched	the
company	or	being	really	passionate	about	working	for	them.	They	presume,	for
better	or	worse,	that	you	want	to	work	for	them.	It’s	better	to	show	a	passion	for
the	 role/team,	 or	 some	 experience	 that	 makes	 you	 a	 good	 fit.	 Avoid	 answers
about	it	being	a	good	stepping	stone	for	your	career	or	a	nice	name	for	a	resume.
Those	 answers	 might	 make	 your	 interviewer	 think	 you’re	 not	 going	 to	 stick
around	for	long.

At	 a	 startup,	 passion	 for	 the	 company	 or	 expertise	 in	 the	 space	 can	 be	 really
important.	You	should	use	the	company’s	product	and	have	an	opinion	about	it.
Avoid	 answers	 about	wanting	 the	 “financial	 upside”	 of	 a	 startup.	That	 doesn’t
make	you	 a	 better	 candidate;	 it	 just	means	you	 like	money.	 It	 also	means	you
might	be	unrealistic	about	the	hardships	of	a	startup	or	that	you	might	leave	the
second	things	get	rough.

Try	to	come	up	with	two	or	three	reasons	prior	to	your	interview.	And,	of	course,
practice	your	answer.

If	you’re	asked	 this	question	by	multiple	 interviewers,	 it’s	okay	 to	give	a	very
similar	 answer	 to	 each.	 In	 fact,	 it	might	 be	 strange	 if	 you	 didn’t	 offer	 similar
reasons.

“Why	should	we	hire	you?”
This	 is	 an	 aggressive	 phrasing	 for	 the	 question,	 but	 it	 can	 be	 asked	 in	 many
ways.	An	interviewer	might	instead	ask	you	why	you	think	you	would	be	a	good
fit	for	the	role	or	what	you	think	you	could	offer	the	company.

As	 intimidating	 as	 this	 question	 can	 be,	 it’s	 actually	 a	 great	 question	 for	 you.
You’re	being	asked	to	sell	yourself;	no	more	subtly	inserting	little	tidbits	about
why	you’d	be	a	great	fit.	What	could	be	better?

Your	answer	to	this	question	can	include	any	or	all	of	the	following:
	

Why	you	are	a	good	PM:	Have	you	shown	initiative	in	your	current	job?
Do	you	have	deep	technical	skills?	Have	you	been	successful	as	a	PM	in	the
past?	Where	possible,	back	up	your	answer	with	evidence.	It	will	be	much
more	convincing.
Why	 you	 are	 a	 good	 fit	 for	 this	 space:	 Have	 you	 worked	 in	 an	 area
relevant	 to	 the	 team	 or	 company?	 Are	 you	 really	 passionate	 about	 the
space?	Why?	 This	 is	 a	 good	 time	 to	 mention	 what	 you	 know	 about	 the
company	 or	 team’s	 industry.	 For	 example,	 if	 you	 know	 a	 bunch	 about
advertising,	 talk	 to	 the	 interviewer	about	how	you	have	experience	 in	 this
area.
Why	 you	 are	 a	 good	 fit	 for	 this	 company’s	 culture	 or	 work
environment:	 Sometimes,	 there	 can	 be	 unique	 aspects	 of	 the	 company’s
environment	 that	 make	 you	 a	 good	 fit.	 For	 example,	 suppose	 it’s	 a	 very
small	 startup	 where	 PMs	 take	 on	 a	 lot	 of	 responsibilities	 beyond	 those
traditionally	 belonging	 to	 a	 PM.	You	might	 say	 something	 like:	 “I	 enjoy
taking	 on	 a	 diverse	 set	 of	 responsibilities.	 Outside	 of	 work,	 I	 started	 a
volunteer	organization	tutoring	children.	This	has	given	me	the	opportunity
to	 juggle	 responsibilities	 like	 marketing,	 advertising,	 event	 planning,
management,	and	recruiting.	I’ve	found	I	really	enjoy	doing	a	diverse	set	of
tasks	at	once,	and	I’m	not	above	taking	on	the	tedious	work.”

The	 more	 you	 know	 about	 the	 company	 or	 position	 requirements	 the	 better.
Before	your	interview,	re-read	the	job	description	and	come	up	with	examples	to
match	what	the	company	is	looking	for.

Many	of	the	elements	of	your	answers	to	“Tell	me	about	yourself.”	and	“Why	do

you	 want	 to	 work	 here?”	 apply	 to	 this	 question,	 but	 you	 would	 use	 these
elements	more	directly.

A	good	answer	to	this	question	might	be	something	like:

I	think	three	things	make	me	a	great	fit	for	this	position.

First	 of	 all,	 I	 have	 several	 years	 of	 experience	 as	 a	 PM,	 and	 I’ve
consistently	shown	success	 in	 the	role.	 I’ve	 launched	four	critical	 features
from	scratch	in	that	time,	and	was	rated	the	top	PM	at	my	company.	This	is
what	led	to	my	current	hiring	manager	recruiting	me	to	his	team.

Second,	 as	 a	 CS	 major	 and	 statistics	 minor,	 I	 have	 the	 technical	 and
quantitative	background	that	you’re	looking	for.	I	haven’t	done	a	ton	of	data
analysis	 in	my	current	role,	but	 I	have	 the	academic	background	and	raw
skills	to	learn	it	quickly.	I’ve	actually	started	learning	a	bit	of	data	analysis
through	 some	 online	 courses.	 I	 have	 no	 doubt	 I’ll	 be	 able	 to	 pick	 up	 the
skills	you	need	quickly.

Third,	 I	 really	 want	 to	 be	 here.	 I’m	 a	 fitness	 junkie,	 having	 run	 three
marathons	and	participated	in	two	Tough	Mudder	races.	I	 truly	believe	in
your	mission	of	the	gamification	of	exercise	and	I’m	constantly	coming	up
with	ways	of	making	exercise	more	 fun.	 I’ve	even	 recruited	 several	of	my
anti-exercise	friends	to	regularly	workout—and	enjoy	it.

This	candidate	has	done	 several	 things	 in	 this	answer	 that	you	can	 learn	 from.
First,	he’s	shown	he	wants	to	be	there	and	he	can	do	the	job	well.	Second,	he’s
offered	 information	 to	compensate	for	what	an	 interviewer	might	perceive	as	a
gap	 in	 his	 expertise:	 data	 analysis.	 Third,	 he’s	 used	 the	 opportunity	 to	 list
specific,	 concrete	 accomplishments	 that	 wouldn’t	 otherwise	 appear	 on	 his
resume,	 such	as	being	 recruited	by	a	manager.	Fourth,	he’s	 tackled	 the	answer
with	structure.

Responding	 in	 a	 well-structured	way	 to	 a	 fairly	 open-ended	 question	will	 not
only	demonstrate	to	your	interviewer	that	you	are	a	strong	communicator,	but	it
will	also	help	your	interviewer	retain	the	information	you	give	him.

“Why	are	you	leaving	your	current	job?”
Often,	this	question	is	asked	as	an	icebreaker.	Your	interviewer	isn’t	necessarily
looking	for	anything	specific;	she	just	wants	to	learn	a	bit	more	about	you.	Your
goal	is	essentially	to	not	screw	things	up.

What	can	screw	up	an	answer?	Any	of	these	things:
	

Complaining	 about	 your	 current	 role.	 Interviewers	 don’t	 like	 negative
candidates.	They	worry	that	candidates	will	always	be	negative—even	after
being	hired—or	 that	 the	 candidate’s	 dislike	 of	 her	 current	 role	 is	 actually
her	own	fault.	If	you	have	a	bad	relationship	with	your	boss,	this	could	be
as	much	your	fault	as	it	is	your	boss’	fault.
Focusing	on	money.	A	candidate	who	is	just	looking	for	more	money	often
doesn’t	 make	 a	 great	 employee.	 An	 interviewer	might	 worry	 that	 such	 a
candidate	 lacks	 passion	 and	 commitment	 for	 the	 job,	 and	 will	 leave	 that
company	as	soon	as	the	opportunity	for	more	cash	comes	up.
Being	 bored	 and	 not	 learning.	 While	 there	 are	 ways	 to	 spin	 this	 in	 a
positive	 way,	 being	 bored	 at	 your	 current	 role	 means	 your	 most	 recent
experience	isn’t	very	valuable	or	 interesting.	This	 is	probably	not	 the	way
you	want	to	kick	off	your	interview.

Instead,	focus	on	the	positive.	What	are	the	things	you	are	looking	forward	to	in
a	new	role?

Any	of	 these	 reasons,	which	 range	 from	benign	 to	positive,	would	work	as	an
explanation:
	

“To	 be	 honest,	 I’m	 actually	 pretty	 happy	 in	 my	 current	 role	 and	 wasn’t
really	 looking	 to	 leave.	 I	 stumbled	 across	 this	 job	 opening	 though,	 and	 it
sounded	like	such	a	great	opportunity	I	just	couldn’t	pass	it	up.”
“After	being	a	development	manager	for	several	years,	I’ve	acquired	deep
technology	 and	 leadership	 experience.	 I	 now	want	 to	 take	 those	 skills	 to
move	 more	 into	 the	 product	 management	 side,	 since	 I	 really	 love	 the
experience	of	launching	a	new	product.”
“I’ve	had	to	relocate	for	personal	reasons.”
“My	company	was	acquired	 last	year,	 so	 it’s	 changed	a	 lot.	 I’d	 like	 to	be

back	in	a	more	entrepreneurial	environment.”
“I	actually	really	like	my	current	company	and	role,	but	after	being	there	for
several	 years,	 I	want	 to	 be	 somewhere	which	 is	 giving	more	 back	 to	 the
world.”
“I	 have	 a	 really	 deep	 statistics	 background	 and	 I	 really	 enjoy	 being
quantitative.	I	want	to	be	somewhere	where	I	can	use	this	more	directly.”
“The	current	 team	I’m	on	is	more	enterprise	focused,	and	I	want	 to	move
closer	to	the	consumer.”
“I’ve	gotten	a	lot	of	great	opportunities	in	my	current	role,	but	after	being
there	 for	 three	 years,	 I	 feel	 my	 learning	 has	 slowed	 down	 a	 bit.	 The
company	and	space	 just	 aren’t	growing	 that	much.	 I	want	 to	 take	on	new
challenges.”

This	 is	not	a	 time	to	blabber	for	a	while.	Keep	it	short	and	sweet;	one	to	three
sentences	should	be	enough	to	handle	this	question.

“What	do	you	like	to	do	in	your	spare	time?”
With	this	question,	your	interviewer	is	primarily	looking	to	get	to	know	you	and
what	you’re	 interested	 in.	The	best	 answers	 to	 this	question	might	 show	some
sort	of	experience	that’s	relevant	to	the	position,	but	discussing	any	passions	that
you	have	outside	of	work	will	be	a	positive.

Best	Answers
The	 answers	 below	 show	 some	 relevance	 to	 the	 job	 by	 highlighting	 the
candidate’s	leadership	abilities,	technical	talent,	or	initiative.	All	of	these	things
make	the	candidate	well	suited	to	a	PM	role.
	

“I	really	enjoy	exploring	new	technology.	I’ve	set	a	goal	to	build	a	simple
to-do	 list	 application	 in	 as	many	 languages	 as	possible,	 just	 to	 learn	 a	bit
about	what	each	programming	language	does.	So	far	I’ve	done	this	in	five
languages.”
“I’ve	been	getting	involved	recently	with	online	learning.	I’ve	taken	a	few
online	 courses	 to	 learn	 a	 little	 bit	 about	 various	 roles,	 such	 as	marketing,
advertising,	 and	 finance.	 I’m	 also	 preparing	 to	 launch	 my	 own	 class	 on
Product	Management	for	Software	Engineers.”
“I’ve	been	doing	a	lot	of	volunteering	for	the	animal	shelter.	A	few	months
ago	 I	 created	and	 launched	a	new	program	called	Teens	4	Animals	 to	get
more	 teenagers	 involved.	 That	 program	 has	 recruited	 50	 new	 volunteers
from	 local	high	 schools	and	saved	more	 than	100	dogs	 from	being	put	 to
sleep.”

Good	Answers
The	answers	below	don’t	show	any	particular	relevance	to	a	PM	role,	but	they	do
show	 some	 interests	 outside	 of	work.	Most	 importantly,	 they’re	 all	 backed	 up
with	some	concrete	evidence	that	makes	the	interest	sound	more	convincing.
	

“I	 read	 a	 lot.	Most	 recently	 I’ve	 been	 reading	 a	 lot	 of	 psychology	books.
I’m	really	fascinated	by	how	our	minds	work	and	why	we	make	the	choices
we	do.	So	much	of	it	is	counter-intuitive.”
“I	love	playing	ultimate	frisbee.	I	play	on	a	frisbee	league	at	my	company,

and	also	joined	a	neighborhood	pickup	league.”
“I	 really	 enjoy	 doing	 basic	 construction	 projects	 around	my	 house.	 I	 still
have	a	lot	to	learn,	but	I’ve	had	some	recent	successes.	I	re-did	my	patio	a
few	months	ago	and	it’s	still	standing.	I	guess	that	shows	some	promise.”
“I’m	 the	 lead	 singer	 and	 primary	 songwriter	 for	 a	 punk	 rock	 band	 called
Out	Like	Pluto.	I	co-founded	the	band	with	one	of	my	bandmates,	and	I	also
handle	most	of	the	social	media	marketing	for	the	group.”

No-Value-Add	Answers
It’s	difficult	to	really	screw	up	this	question,	but	there	are	plenty	of	answers	that
won’t	 really	 help	 your	 case.	 The	 answers	 below	 are	weak	 because	 they	 don’t
show	any	passion.	You	go	 to	work,	come	home,	and	 then	see	your	 family	and
friends.	This	answer	won’t	hurt	you	a	 ton,	but	you’re	 losing	the	opportunity	 to
add	a	new	dimension	to	your	job.
	

“I’m	not	sure.	I	guess	I	don’t	really	have	a	ton	of	true	hobbies	since	I	work
a	lot.”
“I	mostly	just	hang	out	with	friends.	We	go	out	to	dinner,	sometimes	wine
tasting	or	something	like	that.	I’ve	also	organized	the	occasional	barbeque
at	my	place.”
“I	 spend	 a	 bunch	 of	 time	 just	 reading	 things	 on	 the	 internet—blogs,	 tech
news,	etc.”

Most	people	do	have	some	hobbies	and	that	can	be	backed	up	with	evidence,	if
they	 think	 hard	 enough.	Do	 you	work	 out	 daily?	 Set	 a	 goal	 for	 yourself,	 like
training	for	a	marathon	or	developing	ten	new	exercise	routines	per	month.	Do
you	spend	a	lot	of	time	on	the	internet?	Use	that	time	productively	by	writing	a
blog	or	answering	questions	on	Q&A	forums.	Do	you	enjoy	photography?	Take
some	classes	in	it	or	set	up	an	online	portfolio,	even	if	it’s	not	very	good.

You	are	not	trying	to	account	for	all	of	your	free	time	in	this	answer.	You’re	just
trying	to	add	a	new	dimension	to	your	profile	and	talk	about	it	credibly.

“Where	do	you	see	yourself	in	five	years?”
This	question	scares	candidates,	in	part	because	they	think	that	interviewers	are
asking	it	to	trip	them	up	in	some	way.	Not	so.

An	interviewer	asks	this	question	for	several	reasons:
	

To	understand	 if	you	actually	want	 this	 job:	 If	 the	 role	doesn’t	 fit	 into
your	 long-term	 goals,	 it’s	 a	 good	 tip-off	 to	 your	 interviewer	 you	 are	 just
looking	at	this	as	a	short-term	job	to	fill	in	the	gaps.	Moreover,	if	you’re	not
prepared	 to	 answer	 this	question,	 it	might	be	 a	 sign	you	don’t	 really	 care
about	the	job.
To	 see	 if	 you	 even	 have	 a	 plan:	 Successful	 people	 tend	 to	 know	where
they’re	going	in	life.	If	you	don’t	have	a	plan,	an	interviewer	might	worry
you’re	not	very	serious	about	your	career.
To	test	your	ambition:	Ambitious	people	generally	make	good	employees.
If	 your	 long-term	goals	 reflect	 a	 lack	of	 ambition,	 that’s	 not	 a	 good	 sign.
Similarly,	 if	 you’re	 unrealistically	 ambitious,	 that	 also	 isn’t	 a	 good	 sign.
You	have	expectations	the	company	can’t	match,	and	you’re	unlikely	to	be
a	good	fit.
To	 ensure	 the	 company	 can	 give	 you	what	 you	want:	 If	 a	 role	 isn’t	 a
good	fit	for	your	long-term	goals,	the	company	wants	to	know	that.	You’d
be	 unhappy	 in	 the	 job,	 would	 likely	 be	 unsuccessful,	 and	 would	 quickly
leave.	That’s	not	a	good	thing	for	anyone.

Ideally,	 you	will	 have	5-year,	 10-year,	 and	20-year	plans,	 and	 this	 role	will	 fit
nicely	in	line	with	that.

If	 you	 don’t	 have	 things	 quite	 as	 nicely	 planned	 as	 this,	 you	 can	 think	 of	 the
answer	to	this	question	a	different	way:	Where	would	very	strong	performance
in	this	role	get	you	in	five	years?	Hopefully,	that	is	where	you	see	yourself.

If	you’re	prepared	for	it,	this	question	can	be	a	great	opportunity.	You	can	use	it
to	tell	the	interviewer	whatever	you	want	about	yourself.

I’d	love	to	be	lead	PM	for	an	emerging	business	unit	where	I’ll	get	to	think
about	long-term	strategy,	particularly	with	respect	to	monetization	models.
I’m	particularly	interested	in	mobile,	and	I	could	see	myself	leading	a	team

of	PMs	and	engineers	on	 the	mobile	 side.	Additionally,	 I’m	 really	 excited
about	the	ways	in	which	a	company	can	help	new	employees	ramp	up	faster.
I	could	see	myself	creating	a	more	formal	new	employee	training	program
where	 employees	 get	 mentorship	 and	 training	 in	 different	 areas	 of	 the
business.

With	this	answer,	the	candidate	has	demonstrated	ambition	as	well	as	a	passion
for	business	models,	leadership,	and	mentorship.

You	can	use	your	answers	to	the	career	vision	question	to	highlight	what	you’re
good	at	and	what	most	excites	you.

“What	are	your	strengths	and	weaknesses?”
While	 many	 interviewers	 have	 moved	 away	 from	 this	 question,	 it’s	 still
commonplace	enough	 that	you	should	be	prepared	 for	 it.	Be	prepared	 for	your
interview	with	three	strengths	and	three	weaknesses.

For	your	strengths,	focus	on	things	that	are	specific,	relevant	to	the	position,	and
can	be	supported	with	evidence.	For	example,	you	could	say	something	like	this:
	

“I	 have	 a	 ton	of	 initiative.	 I’m	not	 afraid	 to	get	my	hands	dirty	or	 take	 a
risk.	 At	 my	 last	 job,	 I	 felt	 a	 lot	 of	 non-engineers	 would	 benefit	 from
understanding	more	about	how	the	product	is	built.	I	started	a	weekly	lunch
program	 where	 engineers	 would	 give	 technical	 talks	 to	 non-technical
people	 about	 the	 product,	 recent	 developments	 in	 technology,	 and	 other
related	 topics.	Almost	 everyone	 in	 the	 company	came	 to	 at	 least	 one	 talk
each	month,	 and	 about	 10	 percent	 of	 the	 company	 attended	 every	 single
talk.”
“I’m	 scrappy	 and	 find	 creative	 ways	 to	 get	 things	 done.	 For	 example,	 I
wanted	 to	 teach	 a	 class	 in	 college,	 and	 undergraduates	 were	 not	 really
allowed	 to	 do	 that.	 By	 partnering	 with	 a	 well-respected	 professor	 who
would	officially	oversee	the	class	but	not	get	directly	involved,	I	was	able
to	teach	something	entirely	on	my	own.”
“I	think	one	of	my	biggest	strengths	is,	interestingly,	a	lack	of	stubbornness.
I	 can	 be	 passionate	 about	my	 ideas,	 but	 I’m	 also	 not	 afraid	 to	 admit	 I’m
wrong.	 This	 has	 helped	 me	 be	 flexible	 when	 aspects	 of	 the	 product	 or
marketing	changed	quickly,	and	it’s	also	helped	build	my	coworkers’	 trust
in	me.”

Do	not	list	“intelligence”	as	a	strength.	Yes,	you	might	be	very	intelligent.	Yes,	it
is	 relevant	 to	 the	position.	However,	 listing	 this	 just	 comes	across	 as	 arrogant,
and,	 frankly,	 the	 interviewer	will	make	 her	 own	decision	 as	 to	whether	 or	 not
you’re	intelligent.

For	 weaknesses,	 you	 want	 to	 give	 a	 genuine	 weakness.	 The	 old	 trick	 of
disguising	a	positive	attribute	as	a	weakness	(“I	work	too	hard”)	does	not	work
—and	probably	never	has.	Your	interviewer	wants	to	see	that	you	can	admit	to
your	faults.

That	said,	it	is	a	good	idea	to	accentuate—or	at	least	mention—the	positive	side
of	the	weakness.	What	have	you	learned	from	it?	Are	there	any	benefits	to	this?
How	do	you	compensate	for	this	weakness?
	

“I’m	 often	 not	 very	 detail	 oriented.	 While	 this	 has	 some	 benefits,
particularly	in	an	entrepreneurial	environment	by	helping	me	move	faster,	it
also	 means	 I’ve	 made	 some	 embarrassing	 mistakes	 in	 the	 past.	 I’ve
developed	a	good	sense	though	of	the	types	of	situations	where	I’m	likely
to	make	mistakes,	and	I	double	or	triple	check	my	work	in	those	cases.”
“I	can	sometimes	come	across	as	too	negative	or	critical,	even	when	I	don’t
mean	to	be.	I	know	I’ve	hurt	some	people’s	feelings	in	the	past,	especially
earlier	 in	my	 career.	 I’ve	worked	 on	my	 communication	 style	 a	 bunch	 to
mitigate	this.	I	precede	any	negative	feedback	with	positive	comments,	and
I	ask	questions	instead	of	directly	asserting	the	criticism.”
“I	can	sometimes	get	distracted	at	work,	particularly	when	I	have	a	 lot	of
different	tasks	on	my	plate.	I	try	to	do	everything	at	once,	get	overwhelmed,
and	 don’t	make	 solid	 progress	 on	 any	 of	 them.	 I’ve	 found	 a	way	 to	 deal
with	this	when	I	have	multiple	competing	responsibilities	by	developing	a
clear	 to-do	list.	This	 imposes	more	structure	on	my	workday	and	prevents
the	feeling	of	being	overwhelmed.”

If	it	makes	you	feel	more	comfortable	or	helps	you	accentuate	the	positive,	you
can	phrase	your	weakness	as	“One	of	the	things	I’m	working	on	is	….”	This	can
show	you	are	working	on	your	weaknesses	and	shift	it	around	in	your	head	to	a
topic	you	don’t	mind	talking	about.

Generally,	try	to	avoid	weaknesses	that	are	too	tactical	or	temporary.	An	answer
like,	 “I	 don’t	 have	much	 experience	 in	 people	 management.”	 doesn’t	 help	 an
interviewer	get	to	know	you	and	doesn’t	show	humbleness.	In	fact,	it	just	looks
as	if	you’re	afraid	to	admit	to	genuine	weaknesses—or	don’t	think	you	have	any
personality	faults.

Of	 course,	 candidates	 can	 go	 too	 far	 to	 the	 other	 side	 and	 offer	 up	 a	 deeply
detrimental	weakness,	such	as	lack	of	honesty	or	a	poor	work	ethic.	This	is	very
rare	to	see,	though.	When	candidates	flunk	the	weaknesses	question,	it’s	almost
always	because	they	came	across	as	trying	to	hide	genuine	faults.

Below,	we	have	provided	a	list	of	sample	strengths	and	weaknesses.	This	is	only

to	get	you	started;	your	strengths	and	weaknesses	might	not	be	on	this	list.	You
should	pick	ones	that	ring	true	for	you.

	

Sample	Strengths
	

creative scrappy analytical
decisive organized energetic

calm	under	pressure risk	taking thinking	outside	the	box
understand	people’s	feelings see	things	through thorough

detail-oriented initiative flexible
multitasking quantitative good	planner
persistent good	at	taking	feedback leadership
independent data-driven persuasive

not	afraid	of	challenges good	mentor;	caring self-critical
add	humor	and	fun	to	a	team enjoy	learning	new	skills prioritization

	

Sample	Weaknesses
	

lack	of	confidence overly	confident not	detail-oriented
unrealistic makes	too	many	assumptions too	negative
indecisive impatient unassertive

procrastinator intimidating	to	others stubborn
hesitant	asking	for	help difficulty	admitting	failure take	feedback	personally

argumentative overanalyzing too	direct	/	blunt
bad	at	multitasking can	be	very	vague easily	distracted

shy short	attention	span micromanages	people

Behavioral	Questions
Chapter	12

Behavioral	questions	come	in	many	shapes	and	sizes.	They	could	ask	how	you
would	 respond	 to	 a	 hypothetical	 situation	 or	 how	 you	 actually	 handled	 a
particular	 type	of	situation.	They	also	may	ask	you	to	elaborate	on	a	particular
section	of	your	resume.	Ultimately	 though,	 they’re	all	 looking	at	 the	same	two
factors:	your	content	and	your	communication.

Unfortunately,	many	candidates	forget	about	one	or	both	of	these	factors.	They
just	try	to	come	up	with	any	answer	that	matches	the	question,	failing	to	focus	on
what	their	answer	says	about	them	or	how	they	deliver	the	answer.

Your	goal	is	to	master	both	of	these	aspects.

Why	These	Questions	Are	Asked
As	 we	 said,	 behavioral	 questions	 are	 about	 your	 content	 and	 your
communication.	Within	these	categories	though,	there	are	multiple	factors.

Content
In	assessing	the	content	of	your	response,	an	interviewer	might	be	trying	to	drill
into	the	following	areas.

Have	you	really	done	what	you	say	you’ve	done?
One	important—and	often	overlooked—reason	that	interviewers	ask	behavioral
questions	is	to	validate	that	your	resume	really	matches	up	with	your	experience.
It’s	 not	 that	 the	 interviewer	 necessarily	 thinks	 you’re	 lying	 (although	 some
candidates	 do);	 it’s	 that	 it’s	 often	 difficult	 to	 assess	 what	 someone	 did	 over
weeks	or	months	of	work	from	a	mere	fifteen-word	bullet.

Imagine	 a	 resume	 bullet	 such	 as,	 “Implemented	 new	 process	 that	 led	 to	 15%
increase	in	user	retention	rates.”

This	seems	pretty	amazing,	but	is	it	really?	The	new	“process”	might	have	been
a	matter	 of	 just	 including	 a	 renewal	 link	 in	 an	 email.	 It	was	 still	 a	 very	 good
change,	of	course,	but	a	change	 like	 that	probably	doesn’t	 indicate	a	 ton	about
your	future	success.

On	the	other	hand,	 the	change	might	be	a	lot	more	impressive	than	your	bullet
made	 it	 sound.	One	or	 two	 lines	doesn’t	offer	you	 the	chance	 to	 really	explain
why	something	was	hard.	Maybe	 implementing	a	new	process	 required	you	 to
build	a	makeshift	team,	gather	data,	and	perform	complex	analysis.

The	fact	 is	n	 interviewer	can’t	bet	 their	 interpretation	of	a	 line	on	your	resume
matches	 what	 you	 actually	 did.	 Your	 accomplishment	 might	 have	 been	 a	 lot
harder	 or	 a	 lot	 easier	 than	 you	made	 it	 sound.	 Behavioral	 questions	 allow	 an
interviewer	to	“dive	deep”	into	your	prior	experiences.

How	have	you	made	an	impact?
The	scale	of	 the	situations	you	discuss	also	indicates	something	about	how	big
your	 accomplishments	 have	 been	 and	 what	 you	 consider	 to	 be	 an

accomplishment.

For	 example,	 suppose	 you’re	 asked	 a	 question	 such	 as,	 “Tell	 me	 about	 a
challenging	problem	you’ve	faced.”

That’s	actually	a	very	open-ended	question.	Your	challenges	could	be	teamwork
issues,	or	they	could	be	analytical	or	quantitative	problems.	They	could	even	be
personal	issues.

The	 scale	 and	 the	 type	 of	 the	 problems	 you	 select	 tells	 your	 interviewer	 a	 lot
about	 the	 complexity	 of	 your	 professional	 history.	 This	 is	 especially	 true	 for
questions	 about	 successes,	 failures,	 and	 challenges.	 If	 you	 haven’t	 had
professional	 wins	 and	 losses,	 then	 many	 would	 argue	 that	 you	 haven’t	 really
done	much	at	all.

Do	you	have	the	relevant	skills	and	attributes	for	the	job?
In	 addition	 to	 the	 above	 elements,	 behavioral	 questions	 are	 typically	 used	 to
evaluate	your	skills	and	attributes.	An	interviewer	might	have	a	very	particular
skill	 or	 attribute	 in	mind,	 such	 as	 leadership	 skills,	 or	 they	might	 be	 asking	 a
broader	question	to	gain	a	sense	for	how	you	handle	things.

A	 question	 such	 as,	 “Tell	 me	 about	 a	 time	 when	 you’ve	 had	 to	 convince	 a
manager	of	something,”	is	looking	at	how	and	why	you	influence	people	when
you	lack	power.
	

Do	you	just	go	with	whatever	a	manager	says?	If	not,	when	do	you	speak
up	and	why?	Is	it	about	your	personal	goals	or	those	of	a	team?	Is	it	about
the	short-term	or	the	long-term	goals?
How	 do	 you	 influence	 someone	 when	 you	 don’t	 have	 the	 power	 to	 just
make	something	happen?	Do	you	gather	data	 to	support	your	conclusion?
Do	 you	 rally	 support	 from	 those	 around	 you?	 Do	 you	 bring	 up	 risks	 or
opportunities?	 What	 tools	 did	 you	 use	 to	 influence	 your	 manager,	 and
which	 of	 those	 were	 successful?	 How	 did	 you	 adapt	 to	 your	 manager’s
style?

Other	questions	might	be	broader.	A	question	such	as,	“Tell	me	about	a	mistake
you	made,”	 is	 likely	 looking	 at	 a	 bunch	 of	 factors.	 Such	 a	 question	 gives	 an
interviewer	a	sense	of	how	you	handle	situations,	if	you’ve	faced	real	challenges,

how	you	recover	from	mistakes,	and	what	you	see	as	a	mistake.	It	also	shows	an
interviewer	(hopefully!)	that	you	can	be	humble	and	admit	when	you	screw	up.

Communication
There’s	good	news	about	behavioral	questions:	even	if	you	can’t	nail	the	content
part,	 you	 can	 at	 least	 nail	 the	 communication	 part.	The	 trick	 is	 to	 apply	 some
specific	structures.

For	 people	 who	 struggle	 with	 communication	 issues,	 including	 non-native
English	 speakers	 and	 those	 prone	 to	 rambling,	 this	 advice	 is	 especially
important.

Nugget	First
The	“nugget	first”	structure	is	a	simple	one.	It	means	to	start	off	your	response
with	the	“nugget”—or	thesis—of	what	your	story	will	be	about.

For	 example,	when	 your	 interviewer	 asks	 you	 about	 a	 challenge	 you	 faced	 at
work,	you	might	open	your	response	with,	“Sure,	let	me	tell	you	about	the	time
had	an	underperforming	teammate.”

Such	 as	 opener	 helps	 your	 interviewer	 focus	 on	 what	 you’re	 about	 to	 say,
allowing	them	to	slot	all	the	bits	of	information	you’re	about	to	give	them	into
that	context.	The	remainder	of	your	story	feels	more	structured	as	a	result.	When
you	 mention	 additional	 details,	 such	 as	 being	 behind	 on	 a	 deadline,	 your
interviewer	knows	that	the	point	of	the	story	is	the	coworker,	not	the	deadline.

It	also	helps	 to	 focus	you	on	what	you’re	about	 to	 say.	You’ll	be	 less	 likely	 to
provide	 extraneous	 details	 because	 you	 know	 your	 answer	 is	 about	 the
underperforming	coworker.

Situation,	Action,	Result	(S.A.R.)
The	Situation,	Action,	Result	structure	can	be	used	on	its	own	or	in	conjunction
with	the	Nugget	First	approach.

The	 S.A.R.	 (also	 often	 called	 S.T.A.R.—Situation,	 Task,	 Action,	 Result)
approach	means	to	describe	the	following	components:
	

Situation:	Your	goal	here	is	to	provide	sufficient	background	information	to
understand	 what	 you	 did	 and	 why	 it	 mattered.	 Be	 careful	 about
overwhelming	your	 interviewer	with	 information	 that	doesn’t	 truly	 inform
them.	 For	 example,	 if	 you’re	 describing	 a	 project	 where	 your	 team	 was
behind,	 it	 may	 not	 be	 necessary	 to	 describe	 the	 details	 of	 the	 project.
Simply	 saying	“We	were	working	on	a	project	 for	 a	key	client”	might	be
enough.
Action:	You	then	describe	the	actions	you	took.	Note	that	the	story	should
focus	primarily	on	what	you	did,	not	what	your	team	did.	Your	interviewer,
after	all,	is	hiring	you.
Result:	Finally,	you	explain	the	results	of	your	actions.	How	did	you	help
your	 team	 or	 your	 company?	 How	 did	 people	 respond?	 When	 possible,
quantify	 your	 impact.	 Tell	 your	 interviewer	 your	 actions	 led	 to	 a	 10%
increase	in	user	retention,	not	just	“greater”	user	retention.

Suppose	you’re	asked	the	following	question:	“Tell	me	about	a	 time	when	you
had	to	influence	a	team.”	You	might	have	a	story	like	this:
	

Nugget:	Sure,	let	me	tell	you	about	the	time	I	needed	to	cut	the	scope	of	a
project.
Situation:	To	meet	an	 important	 release	deadline,	we	needed	to	cut	a	key
feature.	Unfortunately,	 this	was	 a	 feature	 the	developers	were	particularly
excited	about.	If	I	 just	came	out	and	told	them,	“Sorry,	but	no,”	they’d	be
demoralized	and	feel	that	their	opinion	wasn’t	valued.
Action:	I	identified	two	developers	as	being	particularly	strong	influencers,
one	because	 she	was	very	 senior	 and	 the	 other	 because	 he	was	very	well
liked.	I	focused	on	getting	them	on	board	with	the	decision	first.
I	met	with	the	senior	dev	first	to	discuss	the	impending	deadline	and	what	it
meant	 for	 the	 product’s	 architecture.	 We	 discussed	 options	 and
consequences,	 and	 ultimately	 she	 arrived	 at	 the	 same	 conclusion:	 we
needed	to	cut	this	feature.
With	 the	 other	 developer,	 I	 told	 him	 about	 the	 discussion	with	 the	 senior
dev,	appealing	to	this	dev	on	more	of	an	emotional	level.	I	knew	he	valued
his	 social	 status	on	 the	 team,	 so	 I	 told	him	how	much	his	 support	on	 this
would	mean	 to	me.	He	shared	his	concerns	about	 the	 team’s	 reaction	and
assured	me	that	he	would	support	me.
I	asked	both	developers	to	help	me	present	the	decision	to	the	team.
Result:	 The	 team	 was	 ultimately	 disappointed	 in	 the	 conclusion	 but

sympathetic.	Hearing	 two	highly	valued	 team	members	back	 the	decision,
they	 trusted	 that	 it	was	 the	 right	 one.	 I	 pledged	 to	 them	 that,	 if	we	 could
push	 forward	 to	 get	 this	 release	 done	 ASAP,	 we’d	 start	 working	 on	 this
feature	right	after	that	release.
We	ended	up	making	the	deadline	with	a	day	to	spare	and	then	getting	that
other	feature	out	a	few	weeks	later.

By	 structuring	 your	 response	 this	 way,	 you	 allow	 the	 interviewer	 to	 clearly
understand	what	was	 going	 on,	what	 steps	 you	 took,	 and	what	 the	 result	was.
Note	that,	in	this	case,	there	was	no	need	to	discuss	what	the	feature	was	or	why
the	developers	were	excited	about	it.	It’s	not	relevant	to	this	story.

Speak	In	Bullets
Sometimes	 people	 joke	 that	 PMs	 speak	 in	 bullets,	 as	 though	 they’re	 always
doing	 a	 PowerPoint	 presentation.	 This	 isn’t	 a	 bad	 thing;	 in	 fact,	 speaking	 in
bullets	can	be	a	very	good	thing.

When	 you’re	 speaking	 to	 an	 interviewer,	 or	 anyone,	 about	 an	 experience	 you
had,	they	have	far	less	context	than	you.	It’s	easy	for	them	to	get	lost	in	a	myriad
of	 details	 and	 forget	 who	 is	 who	 in	 your	 story.	 Being	 very	 clear	 about	 the
components	of	your	goals,	tasks,	or	results	will	help	your	interviewer.

For	example:
	

“I	did	three	things.	First,	I	talked	with	…	Second,	I	…	And	third,	I	…”
“We	had	 two	 issues	with	 this	plan.	Number	one,	we	…	And	number	 two,
we	…”

If	 you	 can	 picture	what	 you	 say	 in	 a	 bullet	 list,	 and	 deliver	 it	 that	 way,	 your
interviewer	will	have	a	much	easier	time	dissecting	the	information.

Preparation
To	deliver	strong	content,	you	need	to	be	well	prepared.	In	fact,	 in	many	ways
preparing	 for	 behavioral	 questions	 is	 probably	 the	 best	 “bang	 for	 your	 buck.”
You	 know	 you’ll	 be	 asked	 behavioral	 questions	 and,	 with	 proper	 preparation,
you	really	can	master	these	questions.

Step	1:	Create	a	Preparation	Grid
A	 preparation	 grid	 helps	 you	map	 your	 experience	 to	 the	 common	 behavioral
questions.	It	might	look	something	like	this:
	

Job	1 Job	2 Extracurricular
Leadership	/	Influence
Teamwork
Successes
Challenges
Mistakes	/
Failures

In	 the	 columns,	 you	 list	 each	major	 “chunk”	 of	 your	 resume:	 each	 role,	 each
project,	 and	 each	 extracurricular	 (volunteer,	 etc.)	 activity.	 In	 the	 rows,	 you	 list
the	major	categories	for	behavioral	questions:	leadership	/	influence,	teamwork,
successes,	challenges,	and	mistakes	/	failures.	Then,	fill	in	each	cell	with	one	to
three	stories.

Creating	such	a	grid	will	make	it	easy	for	you	to	come	up	with	an	answer	to	a
very	specific	question.	When	your	interviewer	asks	you	a	question	like,	“Tell	me
about	a	 time	when	you	dealt	with	a	hostile	coworker.”	or,	“How	did	you	show
leadership	at	your	last	company?”	you’ll	have	a	story	on	hand	to	deliver.

Step	2:	Master	Five	Key	Stories
The	 cells	 above	 have	 lots	 of	 stories,	 but	what	 you	want	 to	master	 is	 five	 key
stories	that	best	represent	why	you’re	a	great	PM	candidate.	These	are	the	stories
that	you’ll	 try	 to	 fit	 in	whenever	you	have	a	 chance.	This	 is	where	you	get	 to
show	off	your	wow-factor.

When	you	identify	the	five	key	stories	from	your	past,	ask	yourself	the	following
questions.

Is	each	story	substantial?
Each	of	your	stories	should	have	a	substantial	situation,	action,	and	result.	Most
often,	stories	flop	in	the	“action”	part.

Consider	this	story	which	I	rehearsed	with	one	candidate:

My	team	had	just	launched	a	new	feature	for	updating	your	profile	from	the
mobile	app.	Everything	seemed	 to	go	well	at	 first.	But	 then,	 several	users
began	complaining	they	were	getting	spammed.

I	gathered	the	developers	together	and	asked	them	to	focus	on	figuring	out
if	this	was	our	fault.	It	turns	out	the	process	of	updating	their	profiles	had
inadvertently	changed	their	privacy	settings.

The	 developers	 were	 able	 to	 remedy	 the	 situation.	 They	 reverted	 to	 old
privacy	settings	and	rolled	out	a	fix.

I	then	drafted	an	email	to	the	users	explaining	the	situation	and	our	remedy.
The	 users	 were	 happy	 with	 our	 resolution	 and	 the	 issue	 hasn’t	 come	 up
again.

When	 the	 candidate	 got	 to	 the	 end	 of	 this	 story,	 I	 nodded	 and	 said,	 “So	 you
basically	just	wrote	an	email,	right?”

“Well,	yes,”	the	candidate	told	me.	“But	it	could	have	been	a	really	big	problem
if	we	hadn’t	fixed	it	so	quickly.”

She’s	 right;	 it	 could	 have	 been.	 It	 was	 the	 developers	 who	 tracked	 down	 the
problem.	All	this	candidate	really	did	was	write	an	email	apologizing.	That’s	not
substantial.

Make	 sure	 each	 of	 your	 stories	 has	 a	 “meaty”	 situation,	 action,	 and	 result.
Rehearse	your	story	with	someone	and	have	them	parrot	back	to	you	the	gist	of
these	three	components.

Many	stories	 that	 flop	 initially	can	be	 salvaged.	For	example,	 if	 this	 candidate
had	 pulled	 together	 a	 new	 process	 to	 prevent	 these	 situations	 from	 occurring

again,	then	that	could	well	make	a	good	story.

Is	each	story	understandable?
Even	 a	 story	 with	 a	 great	 situation,	 action,	 and	 result	 will	 flop	 if	 it’s	 too
complicated.	 Your	 interviewer	 will	 wind	 up	 lost	 in	 the	 details	 about	 who	 did
what	and	be	unable	to	grasp	the	essential	parts:	what	you	did.

Of	 course,	 a	 good	 part	 of	 making	 stories	 understandable	 is	 how	 you	 deliver
them.	You	need	to	understand	what	the	gist	is	of	each	story	so	you	can	offer	up
just	the	relevant	bits.

If	 you’ve	 stripped	 the	 story	 down	 to	 just	 the	 essentials	 and	 still	 find	 yourself
explaining	a	 lot	of	details,	 it	might	be	 time	 to	kill	 the	 story.	This	 is	 especially
common	with	stories	requiring	technical,	product,	or	mathematical	knowledge.

What	does	each	story	say	about	you?
A	story	you	give	your	interviewer	shouldn’t	 just	answer	the	question;	it	should
communicate	something	to	your	interviewer	about	you	or	how	you	work.	When
you	review	a	potential	story,	ask	yourself:	what	does	this	say	about	me?

For	example,	take	the	following	story:

At	my	 last	 company,	 I	 identified	a	way	 that	we	 could,	with	 a	 few	 tweaks,
support	a	new	market	segment—startups.	However,	the	CEO	was	reluctant
to	 pursue	 this	 opportunity,	 explaining	 that	 he	 was	 worried	 about	 the
additional	 development	 time	 and	 wasn’t	 sure	 this	 new	 market	 would	 be
lucrative.	He	just	didn’t	want	to	take	the	risk	for	so	little	return.

Rather	than	give	up,	I	met	with	one	of	the	key	software	architects	to	develop
a	plan	to	test	out	these	new	tweaks.	We	were	able	to	reduce	the	development
plan	 for	 a	 minimum	 viable	 product	 from	 six	 weeks	 to	 just	 two.	 We	 also
worked	 out	 a	 way	 to	 minimize	 the	 effort	 required	 to	 support	 the	 market,
reducing	the	marketing,	testing,	and	support	costs.

I	 also	 researched	 the	 market	 more	 thoroughly.	 I	 explored	 what	 other
solutions	 that	 market	 had	 and	 got	 a	 feel	 for	 how	 our	 product	 would
compare	to	the	other	options.	I	then	searched	our	customer	base	and	found
that	about	5%	of	our	customers	were	actually	enterprise	customers.

When	I	re-approached	the	CEO,	I	had	a	considerably	 less	risky	proposal.
We	could	spend	just	 two	weeks	of	development	costs	and	roll	out	 this	new
version	 to	 just	 the	 existing	 enterprise	 customers.	 This	 would	 reduce	 our
marketing	costs	to	nearly	zero,	at	least	until	we	knew	if	we	definitely	wanted
to	go	ahead	and	pursue	it.	And	since	we’re	not	rolling	out	a	new	product	to
new	users,	it’s	easy	for	us	to	revert	the	changes.

The	CEO	agreed	to	this	plan	as	a	way	to	explore	this	opportunity	with	the
new	market	segment.	It	ended	up	being	very	successful—in	fact,	it	increased
user	spend	by	20%	for	those	users.	This	new	market	now	accounts	for	about
15%	of	our	total	revenue.

This	candidate	has	shown	that	she	is:
	

Creative:	She	identified	a	new	market	segment.
Ambitious:	She	pursued	an	idea	when	others	might	have	been	discouraged
Understanding:	She	understood	what	the	CEO’s	concerns	were	and	found
ways	to	resolve	them,	rather	than	just	arguing	that	he	was	wrong.
Data	Driven	/	Analytical:	She	gathered	data	to	support	her	pitch.
Scrappy:	She	found	ways	to	reduce	costs	and	analyze	a	market	at	minimal
risk	to	the	company.

You	could	even	approach	it	from	the	other	direction.	What	do	you	want	to	show
about	yourself,	and	how	can	you	communicate	that	through	examples?
	

Are	you	creative?
Are	you	well	liked	within	your	company?
Are	you	good	at	building	teams	and	energizing	people?
Are	you	understanding	and	empathetic?
Are	you	a	good	leader?
Are	you	analytical?
Are	you	determined	and	ambitious?
Are	you	a	risk	taker?
Are	you	good	at	minimizing	risk?
Are	you	technical?
Are	you	good	at	influencing	others?

Each	of	these	areas	could	be	part	of	a	new	story.

Is	it	really	about	you?
A	good	product	manager	is	all	about	putting	her	team	first.

This	 is	 a	 good	 thing	 to	 do	 in	 general,	 but	many	 take	 it	 too	 far	 in	 interviews.
Listen	to	the	way	you	tell	your	story.	If	you	find	yourself	constantly	saying	“we”
and	“us”	 instead	of	“I”	and	“me,”	you	might	want	 to	 tweak	your	wording—or
find	a	new	story	entirely.

These	stories	should	be	about	your	successes	and	failures,	not	your	team’s.	Your
team	 is	 of	 course	 a	 key	part	 of	 those	 (either	 enabling	or	 feeling	 the	 impact	 of
them),	but	it’s	still	about	how	your	actions	contributed	to	those.	For	example,	if
your	team	pivoted,	you	should	discuss	what	you	did	to	lead	your	team	through
that	pivot.

The	actions	should	be	your	actions,	but	the	results	should	be	felt	by	the	team	or
your	customers.

Do	you	“get”	other	people?
Understanding	other	people	is	a	fundamental	part	of	teamwork,	leadership,	and
persuasion,	 and	 therefore	 a	 fundamental	 part	 of	 a	 product	 management	 role.
Your	stories	should	show	that	you	“get”	other	people.

Unfortunately,	sometimes	a	candidate’s	stories	reveal	that	she	lacks	insight	into
other	people.	This	commonly	happens	when	a	candidate:
	

Bad	 mouths	 other	 people:	 Yes,	 we	 all	 know	 some	 people	 can	 be
frustrating	to	work	with,	but	an	interview	is	not	the	time	to	dive	into	this.	If
you	rant	about	a	coworker,	your	interviewer	is	likely	to	wonder	if	the	issue
was	really	that	you	are	hard	to	work	with.	Many	companies	won’t	want	to
roll	 the	 dice	 there.	 Instead	 of	 complaining	 about	 the	 other	 people	 in	 the
story,	address	their	motivations.	You	might	say,	“The	other	PM	was	trying
to	optimize	for	immediate	revenue”	rather	than	“he	was	an	idiot.”
Shows	 helplessness:	 Failure	 is	 okay;	 helplessness	 is	 not.	 If	 you	 weren’t
able	to	convince	other	people	of	something,	explain	why—without	casting
blame.	 For	 example,	 you	 might	 say,	 “the	 executives	 and	 I	 decided	 that
while	 my	 proposal	 was	 exciting,	 changing	 course	 so	 late	 in	 the	 project
introduced	too	much	risk.”

Empathy	 is	 an	 important	 part	 of	 any	 PM	 role,	 and	 these	 stories	 need	 to
demonstrate	that—or	at	least	not	demonstrate	the	opposite.

Do	your	stories	have	good	coverage	and	good	flexibility?
Behavioral	questions	tend	to	fall	into	one	of	five	areas,	so	you’ll	want	to	make
sure	 that	 you	have	good	 coverage	of	 these	 topics	 across	your	 five	key	 stories.
These	common	topics	are:
	

Leadership	&	Influence
Challenges
Mistakes	/	failures
Successes
Teamwork

You	should	have	at	least	one	story	per	topic.

Ideally,	 several	 of	 your	 stories	will	 fall	 under	 two	 or	more	 categories.	 This	 is
valuable	 because	 you	 don’t	 know	what	 you’ll	 be	 asked.	What	 if	 you’re	 asked
multiple	questions	on	challenges?	Or	what	if	a	question	doesn’t	cleanly	fit	 into
any	topic?	You	might	find	that	you’ve	already	used	your	“challenge”	story	for	a
question	 like	 “Tell	 me	 about	 a	 time	 when	 you	 led	 a	 team	 through	 something
difficult”—only	to	get	a	question	that	explicitly	calls	for	leadership.

By	ensuring	your	stories	have	both	good	coverage	and	good	flexibility,	you’ll	be
able	to	prevent	getting	caught	off-guard	with	specific	behavioral	questions.

Step	3:	Practice
You	know	 that	you’ll	be	asked	a	variety	of	behavioral	questions,	 so	 there’s	no
excuse	for	not	being	well	prepared	for	these	questions.	If	possible,	grab	a	friend
to	 listen	 through	 your	 stories.	 Ask	 your	 friend	 to	 then	 repeat	 back	 what	 he
understood	the	gist	of	the	situation,	action,	and	result	to	be.	Did	each	part	sound
substantial	 to	 you	 and	 him?	 If	 he	 struggles	 to	 understand	 what	 your	 story	 is
about,	 then	your	 interviewer	will	 likely	as	well.	That	means	 it’s	 time	 to	pick	a
new	story	or	refine	your	current	one.

Follow-Up	Questions
Just	because	you’ve	nailed	the	question	doesn’t	mean	your	 interview	will	 let	 it
go	at	 that.	Depending	on	 the	question	you’re	asked,	be	prepared	 for	 follow-up
questions	such	as:
	

How	did	the	team	react?
How	did	this	affect	the	future	of	the	team?
What	did	you	learn	from	this?
What	would	you	do	differently	if	this	situation	came	up	again?
Do	 you	 always	 handle	 situations	 like	 this?	 If	 not,	what	made	 you	 handle
things	this	way	this	time?

Types	of	Behavioral	Questions
We	 have	 listed	 some	 of	 the	 common	 behavioral	 questions	 below.	 Note	 that
questions	can	take	many	forms	and	might	be	a	great	deal	more	specific	than	this.
For	example,	rather	than	asking	you	for	a	challenge	you’ve	faced,	you	might	be
asked	for	a	challenge	you	faced	on	a	specific	project.

Leadership	&	Influence
Leading	and	influencing	others	is	perhaps	the	most	essential	responsibility	of	a
PM,	 so	 it’s	 no	wonder	 these	 questions	 come	 up	 so	 often.	A	 product	manager,
unlike	 a	 people	 manager,	 often	 needs	 to	 influence	 others	 without	 direct
responsibility	over	them,	so	an	interviewer	will	want	to	understand	what	tactics
you	use	to	build	teams,	persuade	or	influence	others,

Some	common	tactics	include:
	

Gathering	data	to	support	your	conclusion.
Understanding	 and	 addressing	 people’s	 underlying	 motivations	 or
incentives.
Developing	support	from	key	team	members	first	and	then	leveraging	that
to	get	other	people	on	your	side.
Showing	your	own	vulnerability	to	encourage	others	to	show	theirs.
Being	a	good	role	model	or	example.
Gradually	 leading	 people	 to	 a	 conclusion	 by	 agreeing	 on	 a	 common
framework	first.
Developing	credibility	and	engendering	trust.

If	none	of	these	jog	your	memory,	think	back	to	times	when	you’ve	influenced
other	 people,	 whether	 it	 was	 a	 coworker,	 a	 friend,	 or	 even	 a	 family	 member.
What	 tactics	 worked	 for	 you?	 Or	 what	 tactics	 worked	 on	 the	 other	 side	 to
influence	you?

Sample	Questions
	

1.	Describe	 a	 decision	 you	 made	 that	 wasn’t	 popular.

How	did	you	handle	implementing	it?
2.	Describe	a	time	when	you	had	to	motivate	employees
or	coworkers.

3.	 Tell	me	about	a	time	when	you	showed	initiative.
4.	 Tell	 me	 about	 a	 time	 when	 you	 had	 to	 give	 a
presentation	to	people	who	disagreed	with	you.

5.	 Tell	 me	 about	 a	 time	 when	 you	 had	 to	 make	 an
unpopular	decision.

6.	 Tell	 me	 about	 a	 time	 when	 you	 had	 to	 sell	 another
person	or	team	on	your	idea

7.	 Tell	me	about	a	time	when	you’ve	built	a	team.

	

Challenges
Questions	 about	 challenges	 are	 less	 about	 the	 challenge	 (although	 it	 should	be
something	 meaningful)	 and	 more	 about	 understanding	 your	 reaction	 to
challenges.	After	all,	you	will	be	confronted	with	challenges	 in	your	 job.	They
want	to	understand	how	you	solve	problems.

To	 brainstorm	 challenges	 or	 problems	 you	 have	 faced,	 consider	 if	 you’ve
encountered	any	of	the	following	issues	at	work:
	

Ethical	dilemmas.
Conflicting	incentives.
Insufficient	resources	(time,	money,	expertise).
Incomplete	or	inaccurate	information.
Low	 morale,	 interpersonal	 issues,	 or	 other	 emotional	 problems	 (with
teammates	or	the	team	as	a	whole).
Cultural	or	workstyle	conflicts.
Changing	demands.
Inability	to	accomplish	a	task	or	meet	expectations.

Since	 there	 are	 a	wide	 variety	 of	 problems	 you	 could	 have	 faced,	 there	 are	 a
wide	variety	of	ways	to	solve	these	problems.	Some	common	tactics	include:
	

Gathering	data	to	decide	what	to	do.
Leveraging	the	support	and	expertise	of	people	around	you.
Discussing	and	setting	team	priorities.
Understanding	the	emotions	of	those	around	you.
Thinking	about	what	the	“right”	thing	to	do	is	(based	on	ethics,	what’s	best
for	the	customer,	etc).
Breaking	 down	 the	 situation,	 focusing	 on	 what	 you	 know,	 and
understanding	more	about	what	you	know.
Mitigating	risk.
Being	honest	and	straightforward.
Solving	the	problem	creatively	or	thinking	outside	the	box.
Compromising.
Balancing	short-term	and	long-term	tradeoffs.
Managing	the	expectations	of	coworkers	and	customers.

Some	of	 these	challenges	could	be	 from	an	activity	outside	of	work,	 if	you’ve
done	something	substantial	there.	However,	you	should	be	prepared	with	stories
from	your	formal	work	experience	as	well.

Sample	Questions
	

1.	 Tell	me	about	a	time	when	you	faced	a	challenge	and
overcame	it.

2.	 Tell	me	about	a	time	when	you	weren’t	able	to	reach	a
deadline.

3.	Describe	 a	major	 change	 that	 occurred	 in	 a	 job	 that
you	held.	How	did	you	adapt	to	this	change?

4.	 Tell	 me	 about	 a	 time	 when	 you	 had	 to	 deal	 with
changing	priorities.	How	did	you	handle	it?

5.	 Tell	me	about	a	time	when	you	had	to	make	a	decision

quickly	or	with	insufficient	data.
6.	 Tell	me	about	a	time	when	you	used	a	lot	of	data	in	a
short	period	of	time.

7.	 Tell	 me	 about	 a	 time	 when	 you	 handled	 a	 risky
situation.

	

Mistakes	&	Failures
At	least	one	of	your	interviewers	is	likely	to	ask	about	failures	or	mistakes.	The
goal	 of	 this	 question,	 as	 with	 other	 behavioral	 questions,	 is	 to	 sell	 yourself.
However,	 what	 “selling	 yourself”	 means	 here	 is	 a	 bit	 different	 than	 in	 other
questions.

Your	interviewer	will	be	looking	for	the	following:
	

A	 Big	 Failure:	 Your	 interviewer	 wants	 to	 see	 that	 you’ve	 truly	 failed
before.	Right	or	wrong,	many	people	believe	that	if	you	haven’t	failed	then
you	 haven’t	 really	 tried.	 No	 one	 is	 perfect	 all	 the	 time.	 Thus,
counterintuitively,	you	need	to	have	a	substantial	failure	under	your	belt.
Humbleness:	Your	 interviewer	 is	 also	 looking	 to	 see	 that	 you	 can	admit
failure.	They	know	 that	 you’ve	 failed	 at	 some	point	 in	 your	 life.	But	 can
you	 admit	 it,	 even	 in	 a	 sensitive	moment	 (such	 as	 an	 interview)?	Or	will
you	try	to	sugarcoat	it?	You	want	to	come	across	as	genuine	and	sincere.
Handling:	Your	 interviewer	wants	 to	 see	 how	 you	 handled	 the	 situation.
Did	you	correct	 the	mistake	 for	 that	 incident,	 or	 do	 something	 to	prevent
future	incidents?	How	did	you	relay	the	information	to	your	manager	and/or
team?	What	did	you	learn	from	it?

One	way	to	come	up	with	good	stories	for	this	is	to	think	about	the	things	you’ve
learned	in	your	career;	often	there	was	a	mistake	that	prompted	the	learning.	For
example,	maybe	you	built	exactly	what	 the	customer	asked	for,	but	 they	didn’t
use	 it.	This	 taught	you	 that	you	need	 to	dig	 into	 the	deeper	motivations	of	 the
customer.	 Stories	 like	 this	 can	 be	 great	 because	 they	 naturally	 lead	 into	 the
positive	 ending:	 you	 learned	 something	 important	 that	makes	you	 a	better	PM
now.

A	 small	 number	 of	 candidates	 go	 too	 far,	 and	 their	 failure	 amounts	 to	 a	 “red
flag.”	If	your	answer	involves	doing	something	grossly	wrong	and/or	truly	hurt
someone,	you	might	want	to	pick	something	else.	There’s	a	“sweet	spot”	of	the
size	of	your	mistake.	Most	 candidates	 are	on	 the	 “too	weak”	 side,	but	 a	 small
number	are	on	the	“whoa!	too	much!”	side.

In	particular,	avoid	answers	 that	cut	 into	your	honesty	or	 integrity.	 It’s	okay	 to
have	made	a	mistake	analyzing	data	or	 trying	 to	 take	on	 too	much.	But	 if	you
lied	or	cheated,	that’s	a	much	harder	thing	to	recover	from.

Sample	Questions
	

1.	 Tell	me	about	a	time	when	you	made	a	mistake.
2.	 Tell	me	about	a	time	when	you	failed.
3.	 Tell	me	about	a	time	when	you	improperly	analyzed	a
situation.

4.	 Tell	 me	 about	 a	 time	 when	 you	 were	 disappointed
with	yourself.

5.	 Tell	me	about	a	time	when	you	were	unable	to	juggle
all	your	responsibilities.

	

Successes
Success	 questions	 are	 your	 time	 to	 shine.	 Your	 answer	 to	 this	 question	might
well	overlap	with	your	answers	to	some	of	the	other	questions,	and	that’s	okay.
Your	 success	might	 be	 a	 big	 challenge	you	 conquered,	 a	 time	when	you	 led	 a
team	to	success,	or	even	a	situation	where	you	overcame	a	potential	mistake	or
failure.

For	these	questions,	think	about	the	things	that	you	are	most	proud	of.	Why	are
you	proud	of	this	action?	Is	it	because	it	was	hard?	Because	it	had	a	huge	impact
on	your	company?	Because	it	was	outside	of	your	comfort	zone?	Any	of	 these
aspects	can	make	a	fantastic	answer.	Pick	something	that	is	meaningful	to	you.

Make	sure	you	can	explain	to	the	interviewer	why	you	see	this	as	a	success.	If
it’s	because	it	had	a	big	impact	on	your	company,	you	should	be	able	to	quantify
the	impact.	If	it	was	outside	your	comfort	zone,	this	should	have	changed	you	in
some	small	way	or	helped	you	discover	something	about	yourself.	 If	 it’s	about
solving	a	hard	problem,	you	should	have	learned	something.

Sample	Questions
	

1.	 Tell	 me	 about	 something	 you’re	 proud	 of
accomplishing.

2.	 Tell	 me	 about	 a	 time	 when	 you	 reached	 a	 goal	 that
was	important.

3.	 Tell	me	a	specific	insight	you	gained	from	something
outside	of	work.

4.	 Tell	 me	 about	 a	 time	 when	 you	 went	 above	 and
beyond	the	call	of	duty.

5.	Describe	a	time	when	you	resolved	a	situation	before
it	became	serious.

6.	 Tell	 me	 about	 a	 time	 when	 you	 had	 to	 show
innovation.

7.	 Tell	me	about	a	time	when	you	solved	a	problem	in	a
creative	way.

	

Teamwork
Teamwork	questions	are	used	to	assess	your	interpersonal	skills,	particularly	in
times	when	you	are	working	with	your	immediate	peers.	Look	for	times	in	your
work	experience	where	interpersonal	communication	or	differences	in	work	style
affected	your	team	dynamic.

How	might	you	have	solved	these	issues?	Potential	ways	include:
	

Striking	compromises	across	people.
Finding	ways	of	making	teammates	feel	valued.
Being	able	to	agree	to	things	that	are	suboptimal	for	you	in	the	interest	of
the	greater	team	good.
Understanding	people’s	underlying	motivations	and	incentives.
Motivating	teams	and	boosting	morale.
Relinquishing	your	ego	and	encouraging	others	to	do	the	same.
Setting	common	goals,	metrics,	and	procedures.
Balancing	autonomy	with	team	cohesion.
Building	the	confidence	of	those	around	you.
Increasing	individual	accountability.
Setting	a	good	example.
Taking	personal	responsibility.
Showing	compassion	and	empathy	for	coworkers.
Identifying	and	dividing	responsibilities.
Sharing	knowledge	and	responsibilities.
Mitigating	the	damage	from	a	negative	teammate	or	situation.
Building	trust	across	the	team.

There	is	no	“right”	way	to	foster	positive	team	dynamics.	Part	of	delivering	an
excellent	answer	to	this	question	is	understanding	that	good	teamwork	depends
on	the	specific	situation.

Sample	Questions
	

1.	 Tell	 me	 about	 a	 time	 when	 you	 had	 to	 work	 across
teams	to	accomplish	something.

2.	 Tell	me	about	a	time	when	you	had	a	disagreement	at
work.

3.	 Tell	me	about	 a	 time	when	you	mentored	or	 aided	a
coworker.

4.	 Tell	me	about	a	 time	when	you	had	 to	do	something

you	didn’t	want	to	do.
5.	 Tell	me	about	a	time	when	you	had	to	compromise.
6.	 Tell	 me	 about	 a	 time	 when	 you	 had	 to	 resolve	 a
conflict.

7.	 Tell	 me	 about	 a	 time	 when	 you	 had	 a	 challenging
interaction	with	a	coworker.

Estimation	Questions
Chapter	13

I	 promise	 you:	 no	 one	 actually	 cares	 if	 you	 know	 how	many	 pizzas	 are	 sold
every	year	in	Manhattan.	Even	if	you	knew	the	“right”	answer,	it	wouldn’t	help
you.	In	fact,	it	could	distract	you.	This	is	one	case	where	the	correct	answer	isn’t
necessarily	the	best	one.

Estimation	questions	are	entirely	about	 the	process	you	take	to	solve	them.	It’s
the	journey,	not	the	destination,	so	to	speak.	Interviewers	will	use	these	questions
to	evaluate	your	problem-solving	skills	as	well	as	your	quantitative	skills.

What’s	the	relevance	to	PMing,	you	might	ask?	Quite	a	bit,	actually.

Other	 than	 the	 obvious	 (an	 ideal	 PM	 is	 good	 at	 problem	 solving	 and	 good	 at
math),	being	able	to	estimate	things	is	actually	a	valuable	skill.	After	all,	when
you	need	to	figure	out	what	you	might	be	able	to	expect	for	the	revenue	from	a
given	feature,	estimations	will	come	in	handy.

In	life,	as	in	the	interview,	you’ll	be	shooting	for	a	number	in	the	right	ballpark.
Precision	is	not	expected.

Approach
Since	 estimation	 questions	 are	 fundamentally	 problem-solving	 questions,	 it
should	be	no	surprise	that	the	key	to	these	questions	is	the	approach.	You	can	ace
these	questions	with	a	bit	of	structure	(and	some	tips	and	tricks).

Step	1:	Clarify	the	Question
You	can’t	answer	a	question	that	you	don’t	understand.	That’s	why	it’s	important
to	make	sure	you	heard	the	question	correctly	and	truly	understand	what’s	being
asked.

For	example,	if	you’re	asked	how	much	money	Gmail	makes	in	ads	every	year,
you’ll	 first	 want	 to	 repeat	 the	 question	 back	 to	 your	 interviewer.	 This	 is
especially	important	if	you’re	a	non-native	English	speaker	or	if	you	think	you
might	have	misheard	the	question.

Next,	you’ll	want	 to	ask	about	anything	 that’s	ambiguous.	For	example,	 in	 the
above	question,	there’s	actually	a	lot	that’s	ambiguous:
	

Does	“money”	mean	profit	or	revenue?
If	 it’s	profit,	what	are	we	 including	as	costs?	Do	salaries	count	as	a	cost?
How	do	we	take	into	account	the	salary	for	a	person	who	is	only	working
on	Gmail	some	of	the	time?
Does	 Gmail	 include	 just	 Gmail.com?	 What	 about	 when	 companies	 use
hosted	Gmail	for	their	domain?
Do	you	mean	 the	past	year?	Or	averaging	over	all	years	since	Gmail	was
launched?
Is	this	for	the	US	only,	or	is	it	worldwide?

The	answer	to	each	of	these	questions	would	substantially	affect	your	approach
and	result.

Step	2:	Catalog	What	You	Know	(or	Wish	You	Knew)
Once	 you	 understand	what	 the	 question	 is,	 you’ll	 want	 to	 get	 a	 feel	 for	what
knowledge	you	have	and	what	you	need	to	compute.	In	some	cases,	you	can	ask
your	interviewer	for	key	facts.

Because	there	are	multiple	approaches	that	can	be	effective,	what	you	know	can
guide	your	approach.

For	example,	 if	you’re	computing	 the	revenue	from	Gmail	annually	 in	 the	US,
you	might	know	(or	be	able	to	ballpark)	some	of	these	facts:
	

The	population	of	the	US.
The	percent	of	people	in	the	US	who	own	a	computer.
The	unemployment	rate	in	the	US.
Google’s	annual	revenue.
The	cost-per-click	of	a	typical	advertisement.
The	click-through	rate	of	an	advertisement.
How	well	a	Gmail	or	other	embedded	ad	does	as	compared	with	a	search
advertisement.
The	number	of	ads	shown	on	Gmail.

You	 might	 be	 able	 to	 ask	 your	 interviewer	 for	 some	 of	 these	 facts,	 but	 be
prepared	 to	compute	some	of	 these	 too.	 If	 it’s	 something	 that	many	candidates
would	know	and	you	don’t	(like	the	US	population),	then	it’s	probably	fair	game
to	ask.

When	in	doubt,	 leave	your	question	open-ended:	“Could	you	tell	me	the	click-
through	rate	of	an	advertisement,	or	would	you	prefer	that	I	compute	it?”	If	your
interviewer	pushes	back	by	 saying	 something	 like,	 “What	 do	you	 think	 it	 is?”
that’s	a	good	sign	that	you	might	be	relying	on	questions	too	much.

Steps	2	and	3	are	done	somewhat	 in	parallel.	You	can	come	back	 to	your	Fact
List	as	you’re	developing	your	equation.

Step	3:	Make	an	Equation
This	 is	 possibly	 the	most	 important	 part	 of	 the	whole	 process.	 Here	 is	 where
things	come	together—or	fall	apart.

You	need	to	form	an	equation	to	solve	the	problem.	Doing	so	will	help	you	make
progress	and	show	your	interviewer	that	you	can	tackle	tough	problems	head	on.

There	are	multiple	approaches	for	any	problem,	but	some	are	better	than	others.
However,	there’s	often	no	“best”	approach,	as	it	depends	on	your	knowledge	and

background.

If	 you	 are	 calculating	 the	 annual	 revenue	 for	 Gmail	 in	 the	 US,	 this	 approach
might	work	well:

[#	Gmail	users	in	the	US]	x	[annual	clicks	per	user]	x	[average	revenue	per	click]

	
If	 you	 think	 about	 the	 above	 values	 mathematically,	 the	 components	 will
multiply	together	to	give	you	the	revenue.

This	isn’t	the	only	approach	though.	You	could	also	try	something	like:

[Google	 US	 revenue]	 x	 [%	 revenue	 from	 ads]	 x	 [%	 ad	 revenue	 from	 embedded	 (non-

search)	ads]	x	[%	embedded	ad	revenue	from	Gmail]

	
Before	 trodding	 down	 the	 path	 of	 one	 equation,	 it	might	 be	 useful	 for	 you	 to
brainstorm	multiple	equations	and	to	have	a	plan	of	attack	for	each	component.
You	don’t	want	 to	waste	 a	bunch	of	 time	computing	one	part	 and	 then	 realize
you	aren’t	able	to	compute	the	next	one.

Step	 4:	 Think	 About	 Edge	 Cases	 and	 Alternate
Sources
Pause	 for	 a	moment	 and	 think	 about	 the	 potential	 problems	 in	 your	 approach.
This	is	a	great	opportunity	to	show	your	interviewer	that	you’re	detail	oriented
and	not	afraid	to	challenge	yourself.	No	one	wants	to	hire	someone	who	will	just
brush	problems	under	the	rug.

For	 example,	 if	 you’re	 computing	 the	number	of	 pizza	places	 in	 the	US,	have
you	considered	college	towns?	Or,	if	you’re	computing	how	much	it	would	cost
to	 wash	 all	 the	 windows	 in	 your	 city,	 have	 you	 taken	 into	 account	 broken
windows	(which	you	presumably	won’t	wash)?	Or	even	car	and	bus	windows?

Is	 there	 some	 source	 that	 you	 haven’t	 considered?	 For	 example,	 if	 you	 were
computing	the	number	of	guns	sold	every	year,	have	you	included	illegal	sales?
Sales	to	police	as	well	as	consumers?	What	about	race	tracks	using	blanks?

Think	 carefully	 about	 what	 situations	 might	 not	 fall	 into	 the	 framework	 you
created	in	the	previous	step.

Some	candidates	worry	about	exposing	 faults	 to	your	 interviewer.	Don’t!	Your

interviewer	has	likely	asked	this	question	dozens	of	times.	He’ll	know	where	the
flaws	are	whether	or	not	you	point	them	out.

Step	5:	Break	It	Down
At	 this	point,	 you	have	a	 strong	 framework	 solving	 the	problem.	You	have	an
equation	written	which	 lead	you	 to	an	answer.	You’ve	even	analyzed	potential
edge	cases	and	issues.

Now	you	want	to	find	a	way	to	solve	each	component	of	the	equation.	Let’s	take
a	problem	like	computing	the	annual	Gmail	revenue	in	the	US	and	assume	we’re
working	off	this	equation:

[#	Gmail	users	in	the	US]	x	[annual	clicks	per	user]	x	[average	revenue	per	click]

	
How	can	we	compute	the	number	of	Gmail	users	in	the	US?	If	the	interviewer
won’t	 give	 us	 this	 information,	 we	 can	 compute	 it	 through	 an	 equation	 (yes,
another	one!)	like	this:

[#	Gmail	users	in	the	US]	=

										Population	of	the	US

					x	%	of	People	with	email

					x	%	of	email	users	who	use	Gmail

Perhaps	you	recently	heard	something	on	the	news	about	the	number	of	Hotmail
users.	In	that	case,	you	could	consider	something	like	this:

[#	Gmail	users	in	the	US]	=

#	Hotmail	users	x	Ratio	of	Gmail	users	to	Hotmail	users

Even	an	equation	like	this	might	work:

[#	Gmail	users	in	the	US]	=

#	Smartphone	users	x	[

%	Android	marketshare	*	%	Android	users	w	Gmail	+

%	iPhone	marketshare	*	%	iPhone	users	w	Gmail	+

%	Blackberry	marketshare	*	%	Blackberry	users	w	Gmail	+

%	Windows	Phone	marketshare	*	%	Windows	phone	users	w	Gmail

]

The	last	equation	might	seem	a	bit	crazy,	but	there’s	some	logic	behind	it:	Gmail
usage	might	be	correlated	with	income,	just	as	smartphone	usage	is.

For	each	part	of	the	main	equation,	construct	a	sub-equation.	Keep	each	part	of
the	 original	 equation	 separate;	 don’t	 try	 to	 merge	 them	 into	 one	 mammoth
equation.	You	might	 even	 draw	 a	 line	 down	 the	 page	 (or	whiteboard)	 to	 keep
these	computations	entirely	separate.

Step	6:	Review	&	State	Your	Assumptions
We	 now	 have	 a	 series	 of	 equations	 and	 all	 that’s	 left	 to	 do	 is	 guess	 some
numbers.	 You’ll	 need	 to	 rely	 on	 your	 intuition	 and	 prior	 life	 experience.	 You
might	have	an	idea	of	how	often	you	see	Gmail	addresses	versus	other	addresses.

Be	aware	of	your	biases.	Yes,	everyone	that	you	know	has	a	smartphone,	but	is
this	really	representative	of	the	entire	US?	Probably	not.

Pick	 nice,	 round	 numbers,	 and	 state	 your	 assumptions	 clearly	 to	 your
interviewer.	Keep	 the	 list	 of	 assumptions	you	made	 in	Step	2	updated,	 or	 find
some	way	to	clearly	identify	where	you’ve	made	an	assumption.

Be	 sure	 to	 tell	 your	 interviewer	why	 you’re	making	 the	 assumptions	 you	 are.
Your	reasoning	is	more	important	than	the	precise	number.

Step	7:	Do	the	Math
All	 that	 is	 left	 is	 to	 actually	multiply	 these	 values	 out.	 Remember	 that	 we’re
shooting	for	the	right	ballpark,	not	absolute	precision.	Keep	your	numbers	nice
and	round	to	make	them	easier	to	deal	with.

Step	8:	Sanity	Check
Whew!	You	 finally	 have	 an	 answer.	Give	 that	 answer	 to	 your	 interviewer,	 but
make	 sure	 you	 double	 check	 your	 work	 right	 after	 that.	Make	 sure	 the	 value
passes	some	quick	sanity	checks.

For	example,	suppose	you	compute	that	Gmail’s	US	revenue	is	5	billion	dollars.
Does	that	sound	right	to	you?	This	would	indicate	that	Gmail	is	making	$16	per
person	 in	 the	 US.	 This	 would	 be	 shockingly	 high	 given	 that	 most	 of	 the	 US
doesn’t	use	Gmail.

Go	back	through	and	check	your	work.	If	there’s	an	issue,	it’s	probably	in	one	of
the	following	areas:
	

Original	equation.
Assumptions	made.
Arithmetic.

It	may	help	to	do	quick	sanity	checks	on	each	part	of	the	problem	as	well.	If	you
found	 that	Gmail	 had	150	million	users	 in	 the	US,	 this	 is	 a	 problem	 spot.	 It’s
reasonable	to	believe	that	50%	of	the	US	does	not	use	Gmail.

Numbers	Cheat	Sheet
While	these	questions	are	not	a	test	of	facts,	there	are	some	very	useful	facts	to
remember.

If	 there’s	 something	 else	 you	 need	 to	 know,	 you	 can	 ask	 your	 interviewer.	 In
many	cases	though,	you’d	be	expected	to	deduce	the	value.
	
Approximate	Value Data
300	million US	Population
3 Average	People	per	Household	(US)
100	million #	Households	in	the	US
80	years Life	Expectancy	(US)
65	-	70	years Life	Expectancy	(World)
7	billion World	Population
700	million European	Population
4	billion Asia	Population
9000 Hours	in	a	Year
500,000 Minutes	in	a	Year
--- Company	Revenue
--- Company	Profit
--- #	Users

Note	 how	 all	 of	 these	 values	 are	 nice,	 round	 numbers.	 This	 is	 to	 make	 them
easier	to	work	with.

Prior	 to	your	 interview,	 try	 to	 look	up	 the	company’s	 revenue,	profit,	 and	user
count.	Of	course,	for	some	startups,	some	(or	all)	of	these	values	could	be	zero.

Tips	and	Tricks
Estimation	questions	are	heavy	on	math.	Whether	you’re	good	at	mental	math	or
not,	these	tips	and	tricks	can	make	your	life	a	bit	easier.

Tip:	Round	Numbers
There	 are	 times	 when	 being	 a	 perfectionist	 and	 being	 detail	 oriented	 is
warranted,	 but	 this	 is	 not	 such	 a	 time.	After	 all,	 you’re	 going	 to	 be	 taking	 so
many	wild	guesses	and	“guesstimates”	 that	a	bit	of	hand	waving	 in	your	math
really	won’t	make	a	difference.	You’re	just	trying	to	get	your	answer	in	the	right
ballpark.	Absolute	precision	will	not	do	you	any	favors.

Example
	

The	US	population	is	314	million	(in	2012),	but	you	should	use	300	million
There	 are	 8760	 hours	 in	 a	 year	 (8784	 in	 a	 leap	 year),	 but	 using	 9000	 or
10,000	is	probably	close	enough.

	

Trick:	Rule	of	72
Here’s	a	 fun	and	useful	 tip:	 if	you	need	 to	calculate	how	 long	until	 something
doubles,	divide	72	by	the	percent	increase.

That	 is,	 an	 investment,	 population,	 salary	 or	 other	 value	 increasing	 at	 x%	 per
year	will	double	after	approximately	72/x	years.

This	 rule	 works	 fairly	 well	 (being	 within	 5	 or	 10%	 of	 the	 true	 answer)	 for
smaller	values	of	x.	However,	even	up	through	a	100%	annual	increase	(which	is
doubling	within	a	year),	the	result	is	still	within	30%	of	the	actual	answer.
	

x	<	20%:	result	is	within	5%	of	actual	answer.
x	<	65%:	result	is	within	20%	of	actual	answer.
x	<	100%:	result	is	within	30%	of	actual	answer.
x	>	100%:	 result	gets	 increasingly	 less	accurate.	However,	 this	means	 the
result	doubling	in	less	than	a	year.

Of	 course,	 dividing	 72	 by	 something	 without	 a	 calculator	 is	 generally	 tricky.
Using	70	or	75	will	make	your	life	easier	and	will	generally	be	close	enough.

Example
Salary	Increase
	

Interviewer:	 “A	 recent	 college	 graduate	 makes	 $65,000	 per	 year.	 If	 she
gets	a	raise	of	9%	per	year,	how	long	until	her	original	salary	has	doubled?”
Candidate:	“We	can	apply	the	Rule	of	72	here.	72	divided	by	9	is	8.	So	it
will	take	about	8	years.”
Answer:	The	precise	answer	would	be	that	it	takes	8.05	years	for	her	salary
to	double.	After	8	years,	her	salary	would	have	increased	by	99%.	Not	bad
for	a	bit	of	rounding!

	

Population	Growth
	

Interviewer:	“The	2012	census	determined	the	US	population	to	be	about
300	 million	 and	 increasing	 at	 a	 rate	 of	 0.7%	 per	 year.	 If	 the	 rate	 holds
steady,	how	long	until	the	US	population	reaches	600	million?”
Candidate:	“We’re	basically	looking	for	the	length	of	time	before	the	US
population	doubles,	so	we	can	apply	the	Rule	of	72	by	dividing	72	by	0.7.
What	is	that?	Well,	it’s	certainly	going	to	be	between	72	and	2	x	72	(since
0.7	is	between	1	and	1/2).	We	can	guess	about	100	years	then,	which	would
tell	us	that	the	population	will	double	around	year	2112.”
Answer:	Even	with	all	this	“loose”	math,	the	candidate	came	fairly	close.	If
he	 had	 divided	 72	 by	 0.7,	 he	 would	 have	 gotten	 103	 years.	 The	 precise
answer	is	99.3	years.	The	candidate’s	answer	was	reasonably	close	to	both
values,	but	even	more	importantly,	he	took	a	logical,	quantitative	approach.
That’s	what	these	problems	are	all	about.

	

Trick:	Orders	of	Magnitude
When	multiplying	 two	 large	numbers,	 it’s	easy	 to	make	a	mistake.	This	 isn’t	a
big	deal	if	you’re	off	by	something	in	the	1s	digit,	but	if	you	add	an	extra	zero	or

forget	a	zero,	you	can	wind	up	off	by	10x	or	more.	That	is	a	big	deal.

It’s	therefore	useful	to	validate	that	your	numbers	are	at	least	in	the	same	order
of	magnitude	as	the	expected	result.	One	way	to	do	this	is	the	following:	if	you
multiplied	a	and	b	together	to	get	n,	then	the	sum	of	the	number	of	digits	in	the
terms	should	be	within	one	of	the	number	of	terms	in	the	result.

Or,	more	precisely:

digits(a)	+	digits(b)	=	digits(a	*	b)

Or:

digits(a)	+	digits(b)	=	digits(a	*	b)	+	1

	
For	 example,	 823	 *	 1032	will	 have	 either	 6	 or	 7	 digits.	 (In	 actuality,	 it	 has	 6
digits.)	 If	 you	 wind	 up	 with	 a	 number	 like	 84936,	 you’ll	 know	 you’ve	 done
something	wrong.

Tip:	Be	Confident
How	 many	 times	 have	 you	 heard	 someone	 say,	 “Oh,	 I	 suck	 at	 math”	 or
“Numbers	are	just	not	my	thing”?	Whether	it’s	true	or	not,	an	interview	is	not	the
time	for	such	proclamations.

Companies	want	to	hire	PMs	who	are	confident—or	who	can	at	least	pretend	to
be.	 Don’t	 let	 it	 show	 if	 you’re	 intimidated,	 and	 definitely	 don’t	 tell	 your
interviewer	 that	 you’re	 bad	 at	math.	 Self-deprecating	 comments	won’t	 do	 you
any	favors.

Tip:	Label	Your	Units
Many	people	think	of	labeling	units	of	a	value	(e.g.,	“4	meters”)	as	one	of	those
pesky	 things	 that	 school	 teachers	 insisted	 on,	 but	 this	 habit	will	 be	 invaluable
here.

A	common	mistake	that	candidates	make	is	getting	confused	in	their	units.	They
write	 down	 “4”	 to	 indicate	 “4	 meters,”	 but	 when	 it	 comes	 time	 to	 do	 some
arithmetic,	 forget	 that	 it’s	 not	 in	 kilometers.	And,	 unfortunately,	 this	 can	 be	 a
very	difficult	“bug”	to	find.

If	you	label	all	values	with	their	units,	you’ll	be	much	better	off	in	the	long	run.

Tip:	Consider	Your	Sources
Imagine	you’re	asked	to	compute	how	many	bags	of	potato	chips	are	sold	every
year.	You	will	want	to	make	sure	you	understand	the	different	sources	of	sales.
Potato	chips	are	sold	in	several	places:
	

In	stores,	direct	to	consumers.
In	vending	machines,	direct	to	consumers.
From	distributors,	to	schools,	hospitals,	movie	theaters,	etc.
And	many	other	places!

Multiple	“sources”	are	common	in	market-sizing	or	revenue	questions,	but	they
can	also	come	up	in	other	ways.

For	 example,	 suppose	 you	were	 asked	 how	many	 elevators	were	 needed	 for	 a
one-block	long,	one-block	wide,	20-story	building.	You’ll	probably	chug	along
doing	some	work	with	the	number	of	people	in	the	building	and	how	often	they
need	to	use	the	elevator.	But	have	you	thought	about	the	freight	elevator?	That’s
a	“source”	too!

It’s	okay	in	many	cases	to	decide	that	your	additional	sources	can	be	ignored,	but
you	 still	 want	 to	 call	 them	 out	 to	 the	 interviewer.	 This	 shows	 an	 attention	 to
detail.

Tip:	Keep	Discrete	Steps	Discrete
The	 more	 organized	 you	 can	 be,	 the	 better.	 If	 your	 estimation	 question	 has
several	 independent	 steps,	 you	 should	 try	 to	 compute	 them	 separately.	 If	 (or
when!)	you	make	a	mistake,	you’ll	be	able	to	come	back	to	it,	narrow	in	on	the
exact	mistakes,	and	correct	it	with	minimal	hassle.

Example
Suppose	that	you	are	computing	the	amount	of	revenue	Gmail	earns	in	ads	every
year.	Your	approach	might	look	like	the	following:

$	=	[#	of	Gmail	users]	x	[#	clicks	/	user]	x	[$	/	click]

	
When	you	work	through	this	problem,	you	should	compute	each	of	these	entirely
separately.	You	might	have	a	chart	that	looks	like	this:
	

	$	/	click		 	#	clicks	/	user	 	#	of	Gmail	users	
… … …

You’ll	merge	(or	multiply)	these	values	only	in	the	very	last	step	in	the	question.

Tip:	Record	Intermediate	Steps
While	 some	 estimation	 questions	 are	 very	 short,	 most	 are	 fairly	 lengthy	 and
require	numerous	 calculations.	 It’s	 important	 that	 you	write	down	what	you’re
doing	as	you’re	doing	it.	You	might	need	to	come	back	to	it	later	to	correct	your
work	or	even	to	reuse	a	previously	computed	number.

Record	each	step	in	an	organized,	easy-to-read	fashion	such	that	you	can	easily
come	 back	 to	 any	 step.	 Think	 of	 this	 as	 “showing	 your	 work”	 to	 your	 math
teacher.	 If	 your	 approach	 is	 so	 organized	 that	 another	 person	 could
hypothetically	 follow	 it,	 it	 will	 be	much	 easier	 for	 you	 to	 analyze	where	 you
might	have	gone	wrong.

Tip:	Record	Your	Assumptions
It’s	not	uncommon	 for	your	 final	 answer	 to	be	wildly	off.	When	 this	happens,
there	are	two	main	reasons:	either	you	made	a	math	mistake	(in	which	case	being
organized	will	help	you	locate	it)	or	one	of	your	assumptions	was	wrong.

Therefore,	the	easier	it	is	to	identify	where	you	made	an	assumption,	the	easier	it
will	be	to	discover	potential	issues.

Ideally,	you	would	keep	a	 list	on	 the	side	of	 the	page	with	all	 the	assumptions
you	make.	But,	 if	 that	doesn’t	work	for	you,	at	 least	circle	each	assumption	as
you	make	it.	That	will	go	a	long	way	in	letting	you	skim	all	your	assumptions	for
issues.

Example	Interview
Before	practicing	some	questions	on	your	own,	it	might	be	useful	to	understand
how	 an	 interview	 like	 this	 might	 be	 conducted.	 We	 have	 provided	 a	 sample
dialog	below.	We	have	added	section	headlines	for	ease	in	reading	and	to	make	it
clearer	where	the	candidate	is	applying	certain	steps.

Interviewer:	 I’d	 like	 to	 start	 off	 with	 some	 estimation	 questions.	 How	much
money	does	the	shampoo	industry	earn	each	year	in	the	US?

Clarifying	the	Question
	

Candidate:	Hmm.	You’d	 like	 to	know	the	money	earned	by	the	shampoo
industry	annually,	correct?	Are	you	looking	for	profit	or	revenue?
Interviewer:	Let’s	do	revenue.
Candidate:	Okay,	great.	And	are	we	looking	at	just	shampoo	sales?	Or	are
we	considering	conditioner	and	related	products	too?
Interviewer:	Just	the	shampoo	is	fine.
Candidate:	Alright.	And	when	we	say	revenue,	I’m	assuming	that	we	want
to	 know	 how	 much	 the	 shampoo	 companies	 earn.	 That	 is,	 we’re	 not
including	the	profits	earned	by	resellers.	Correct?
Interviewer:	Exactly.
Candidate:	Okay,	great.	I	think	I	have	what	I	need	to	proceed	then.	So	just
to	 reiterate,	 we’re	 looking	 for	 the	 total	 revenue	 pulled	 in	 annually	 from
shampoo	 sales	 alone.	 May	 I	 have	 a	 few	 moments	 to	 jot	 down	 some
thoughts?
Interviewer:	Sure,	that’s	fine.

	

Catalog	What	You	Know	(or	Wish	You	Knew)
Candidate	records	the	following	data:
	

Population	of	the	US	is	300	million.
Life	expectancy	is	80	years.
How	much	shampoo	does	each	person	use	per	wash?

What	is	a	store’s	mark-up	per	item?

	

Make	an	Equation
Candidate	comes	up	with	one	possible	equation:

[#	 people	 in	 the	 US]	 x	 [#	 shampoo	 bottles	 used	 per	 year	 per	 person]	 x	 [revenue	 /

bottle]

	
	

Candidate:	Well,	one	way	of	doing	this	is	to	compute	the	number	of	bottles
a	given	person	goes	through	per	year	and	then	multiply	that	by	the	revenue
per	 shampoo	 bottle.	 That	 will	 give	 us	 the	 annual	 revenue	 per	 person
annually.	We	can	then	multiply	that	by	the	US	population.
Interviewer:	Okay.	Great.
Candidate:	 I	 think	 that’s	a	 fairly	good	approach,	but	we’ll	want	 to	break
that	down	a	bit	more	by	market	segment.	Shampoo	usage	varies	by	gender
as	well	as	by	age.	Women,	for	example,	spend	more	on	shampoo	than	men
since	 their	 hair	 is	 longer	 and	 since	 they	 tend	 to	 buy	 more	 expensive
shampoo.	So	let’s	tweak	our	approach	a	bit	by	calculating	these	separately
for	men	and	women.
For	women,	we	have	the	following	table:
#	 women	 in	 the
US

#	shampoo	bottles	per	woman revenue	/	bottle

50%	 *	 US
population

#	 showers	 per	 year	 /	 #	 showers	 per
shampoo	bottle

price	 per	 (female)	 bottle	 *	 (1	 -	 store
mark-up)

For	men,	 it’ll	 probably	 be	 easiest	 to	 just	 take	 what	 we’ve	 calculated	 for
women	and	reduce	it	by	a	constant	factor.
#	men	in	the
US

#	shampoo	bottles	per	man revenue	/	bottle

50%	 *	 US
population

#	shampoo	bottles	per	woman	*	(ratio	of	male	shampoo
bottles	to	female	shampoo	bottles)

price	per	(male)	bottle	*	(1
-	store	mark-up)

We	could	further	break	this	down	into	“luxury”	shampoo	users	vs.	normal
shampoo	users,	but	I	think	this	is	close	enough.

Review	&	State	Your	Assumptions
	

Candidate:	I	probably	use	about	a	teaspoon	of	shampoo	per	shower,	and	I
think	there’s	probably	about	100	of	those	in	a	standard	12	ounce	bottle.
That	should	handle	the	middle	part	of	the	women’s	equation.
For	the	right	side	of	the	equation,	we	first	need	to	know	the	price	per	bottle.
I	 think	 shampoo	 usually	 runs	 about	 $5	 /	 bottle	 for	women,	 and	 probably
pretty	 similar	 to	 that	 for	men.	 I	believe	 stores	mark	up	products	by	about
50%,	so	we’ll	work	with	that.

Candidate	adds	the	above	bolded	parts	to	the	assumptions	list.
	

shampoo	per	shower	(woman):	1	tsp.
ratio	of	male	shampoo	usage	to	female:	50%.
size	of	shampoo	bottle:	12	ounces.
tsps	per	12	ounces:	100.
price	per	(female	or	male)	bottle:	$5.
store	mark-up:	50%.

Do	the	Math
	

Candidate:	 From	 here,	 it’s	 basically	 just	 a	 matter	 of	 plugging	 in	 these
values	and	doing	the	math.
For	women:
#	women	in	the	US #	shampoo	bottles	per	woman revenue	/	bottle
50%	 *	 US
population

#	 showers	 per	 year	 /	 #	 showers	 per
shampoo	bottle

price	per	(female)	bottle	*	(1	-	store
mark-up)

50%	 *	 300	 million
people

(365	 showers	 per	 year)	 /	 (100	 showers
per	bottle)

$5	per	bottle	*	50%

150	million 3.5	bottles	/	year	per	person $2.5	per	bottle

This	is	about	$9	per	woman,	and	therefore	about	$1350	million—or	$1.35
billion—on	shampoo.
Men	 have	 shorter	 hair,	 so	 we	 should	 expect	 that	 they	 use	 less	 shampoo.
Let’s	say	men	use	about	half	as	much	shampoo	as	women.	This	means	that
men	contribute	about	$650	million	to	shampoo	revenue.
Together,	this	is	about	$2	billion	on	shampoo.
That	doesn’t	seem	wildly	off,	but	I’d	like	to	double	check	some	things.
Interviewer:	Okay,	go	ahead.

Sanity	Check
	

Candidate:	Well,	 here’s	 one	 potential	 issue.	 I	 calculated	 that	women	 use
3.5	bottles	of	shampoo	per	year,	where	one	bottle	is	about	12	ounces.	This
means	 that	women	are	only	using	3.5	ounces	per	month.	This	seems	a	bit
low.	When	 I	 travel	 with	 a	 travel-sized	 shampoo	 container,	 which	 is	 just
about	3.5	ounces,	 this	only	 lasts	me	about	 two	weeks.	 I	 think	my	number
for	shampoo	usage,	for	both	men	and	women,	is	off	by	a	factor	of	two.	If	I
multiply	this	through,	I’ll	end	up	doubling	the	revenue.	The	annual	revenue
should	be	closer	to	$4	billion.
Interviewer:	Interesting.	Okay.	Is	there	anything	else?
Candidate:	 Well,	 come	 of	 think	 of	 it,	 I	 think	 I	 made	 an	 inappropriate
assumption	before.	I	assumed	that	everyone’s	shampoo	usage	matched	that
of	a	typical	adult	(of	their	own	gender),	and	I’m	really	not	sure	that’s	true.	I
haven’t	taken	into	account	younger	children	or	elderly	/	disabled	people,	or
bald	 people.	 For	 that	 matter,	 I	 haven’t	 taken	 into	 account	 that	 there’s	 a
bunch	of	people	who	just	don’t	wash	their	hair	every	day.	We	need	to	adjust
the	usage	down	quite	a	bit	for	this.
Children	below	age	10	and	the	elderly	/	disabled	account	for	about	20%	of
the	US	 population.	 They	will	 use	 far	 less	 shampoo	 than	 an	 adult	 (due	 to
shorter	 hair	 or	 showering	 much	 less);	 let’s	 just	 assume	 it’s	 0.	 This	 will
account	for	20%	reduced	shampoo	usage.
Let’s	say	that	20%	of	adult	men	are	bald,	so	this	accounts	for	10%	reduced
shampoo	usage.
Now,	what	about	people	who	don’t	shower	daily?	Let’s	assume	that	20%	of
people	don’t	 shower	daily,	 and	 they	 instead	 shower	 every	other	 day.	This
drops	our	shampoo	usage	by	another	10%.
If	we	add	these	together,	we	find	that	we	need	to	reduce	our	shampoo	usage
by	40%.	So	 instead	of	$4	billion,	we’re	back	 to	a	 little	over	$2	billion	 in
annual	revenue.
Interviewer:	Excellent.	Great	work!

Sample	Questions
Here	are	ten	estimation	questions	which	are	similar	to	what	you	might	see	in	an
interview.	We	have	provided	solutions	for	these	problems,	but	you	should	think
of	 these	 solutions	 as	 being	 just	 one	 possible	 solution.	 There	 are	 often	 many
correct	 solutions.	Still,	 reading	 the	 solutions—after	 you’ve	 solved	 the	problem
yourself,	of	course—can	be	a	useful	way	to	explore	alternative	approaches	or	to
remind	you	of	details	you	might	have	missed.

Many	of	these	questions	are	ambiguous,	and	that’s	okay!	Part	of	your	goal	as	a
candidate	is	to	resolve	ambiguities	prior	to	solving	the	question.

To	 practice	 these	 questions,	 make	 appropriate	 assumptions	 to	 resolve	 any
ambiguity.	In	the	solutions,	we	might	make	different	assumptions.	That’s	okay;
our	solutions	are	not	the	answer,	but	rather	just	one	reasonable	approach.

Where	possible,	we’ve	obtained	the	“correct”	answer	from	census	or	other	data.
We’ve	provided	 this	 just	 for	 fun,	but	don’t	worry	 too	much	 if	your	answer	 (or
our	answer)	is	far	off.	It	is	useful	to	understand	why	your	answer	was	far	off—
was	it	a	 logical	error	or	an	unreasonable	assumption?—but	 the	actual	accuracy
doesn’t	matter.

The	first	three	questions	are	tackled	with	a	more	detailed	step-by-step	approach
so	that	you	can	get	the	hang	of	things.

Question	1:	How	much	does	the	US	spend	on	dog	food
each	year?
We’ll	walk	through	this	question	step-by-step.

Step	1:	Clarify	the	Question
What	might	be	ambiguous	in	this	question?	Let’s	think.
	

Are	we	including	wet	food	and	dry	food?	(Assume	yes.)
Are	 we	 referring	 to	 the	 end	 consumer	 here	 or	 stores?	 (Assume	 end
consumer.)

There	isn’t	a	whole	lot	that’s	ambiguous	here,	so	we	can	go	ahead	and	proceed
with	these	assumptions.

Step	2:	Catalog	What	You	Know	(or	Wish	You	Knew)
We	know	or	wish	to	know	the	following:
	

The	US	population	is	about	300	million	people.
Average	people	per	household	is	3.
How	many	dog	owners	are	there?
A	large	dog	eats	once	or	twice	a	day,	finishing	most	of	a	typical	sized	dog
bowl.
A	medium-sized	bag	of	dog	food	is	about	20	lbs.
How	much	does	a	bag	of	dog	food	cost?
Most	dogs	eat	dry	food.
Of	people	who	own	dogs,	how	many	dogs	do	they	own?

Step	3:	Make	an	Equation
An	equation	like	this	will	probably	work:

[#	dogs	in	the	US]	x	[amount	of	dog	food	eaten	per	year]	x	[cost	per	unit]

	
We	 should	pause	here	 and	 think	 through	 this	 approach.	Do	we	have	 a	 plan	of
attack	 for	 how	we’ll	 compute	 each	 of	 these	 components?	Are	 there	 any	 other
approaches	that	could	work?

Step	4:	Think	About	Edge	Cases	and	Alternate	Sources
Our	 approach	 has	 mainly	 centered	 on	 the	 number	 of	 pets.	 Are	 dogs	 used
anywhere	else?	Sure!
	

Police	forces.
Race	tracks.
Farms.

These	 probably	 don’t	 make	 a	 big	 difference	 though	 since	 the	 number	 of	 dog
owners	is	so	large.

Step	5:	Break	It	Down
Computing	the	number	of	bags	of	dog	food	consumed	per	dog	and	the	price	per
bag	will	probably	be	pretty	straightforward.	Computing	the	number	of	dogs	is	a
bit	trickier.

We	could	just	take	a	guess	at	the	percent	of	American	households	with	dogs,	but
it	might	be	better	to	break	down	the	number	of	households	a	bit	better.

Here	are	a	few	ways	we	could	break	down	the	number	of	dogs	in	the	US:
	

Divide	households	by	income	brackets.
Divide	households	by	suburban,	urban,	and	rural.
Divide	 households	 by	 age:	 18	 -	 30,	 30	 -	 60,	 60+.	 We	 haven’t	 included
children	under	18	in	there	since	they	will	be	living	with	an	adult.
Divide	households	by	apartment	vs.	house.
Divide	households	by	children:	with	children	and	without	children.

Any	 of	 these	 (and	 many	 others)	 could	 work.	 You	 could	 even	 combine
approaches—divide	 by	 age	 and	 then	 by	 income	 bracket—but	 that’s	 probably
making	it	a	bit	too	complicated.

We’ll	 take	 the	 last	 approach	 and	 segment	 the	 problem	 into	 households	 with
children	and	households	without:
	
#	dogs	in	the	US amount	of

dog	food
eaten	per
year

cost	per	unit

[#	households]	x	households	with	dogs]	x	[dogs
per	dog-owning	household]

[daily	portion
size]	x
[days	per
year]

cost	per	bag	/
size	of
bag

%	households	with	dogs

=	[%	households	w	kids]	x	[%	kid	households	w	dogs]

+	[%	households	without	kids]	x	[%	no-kid	households	w	dogs]

	
Step	6:	Review	&	State	Your	Assumptions
	

Assume	about	30%	of	households	have	children.	I	am	guessing	this	because
about	90%	of	people	have	kids	at	some	point	and	kids	take	about	20	years
to	grow	up.	So	this	should	mean	that	someone	with	kids	at	home	has	them
for	about	one	third	of	their	adult	life.
Assume	30%	of	households	with	kids	have	dogs.
Assume	10%	of	households	without	kids	have	dogs.
Assume	that	20%	of	households	with	dogs	have	2	dogs.	This	means	that,	of
households	with	dogs,	there	are	1.2	dogs	per	household.
Assume	that	a	negligible	percent	of	families	have	more	than	2	dogs.
Assume	 the	average	dog	eats	about	1.5	cups	of	 food	per	day.	 I’ve	always
owned	larger	dogs	and	they’ve	eaten	about	2	cups	a	day.	So,	small	dogs—
which	probably	eat	proportionally	to	their	size—should	be	eating	around	1
cup	per	day.
Assume	a	typical	bag	of	dog	food	is	about	20	pounds	and	costs	about	$15.
I	think	20	pounds	of	dog	food	is	probably	about	20	cups.

Some	of	 these	assumptions	might	be	a	bit	off,	but	 that’s
okay.	 Your	 interviewer	 isn’t	 testing	 you	 on	 your
knowledge	of	dog	food.

Step	7:	Do	the	Math
It’s	 now	 just	 a	 matter	 of	 plugging	 in	 numbers.	 Remember	 to	 keep	 the	 units
straight.

%	households	with	dogs

=			[%	households	w	kids]	x	[%	kid	households	w	dogs]

		+	[%	households	without	kids]	x	[%	no-kid	households	w	dogs]

=	30%	x	30%	+	70%	x	10%

=	9/100	+	7/100

=	16%

	
#	dogs	in	the	US amount	of	dog	food

eaten	per	year
cost	per	unit

100	million	households	x	1.2	dogs	/
dog-household	x	16%

1.5	cups	/	day	per	dog	*
365	days	/	year

$20	 per	 bag	 /	 20
cups	per	bag

20	million	dogs ~500	cups	/	year	per	dog $1	/	cup

If	we	multiply	these	out,	we	get	$10	billion	in	dog	food.

Step	8:	Sanity	Check
Does	this	sound	right	to	you?	Some	ways	to	sanity	check	it	are:
	

Does	$500	per	year	in	food	costs	per	dog	make	sense	to	you?
Does	16%	of	households	owning	a	dog	make	sense?
If	 there	 are	 20	million	 dogs	 per	 year,	 then	 there	 are	 about	 15	 people	 for
every	dog	in	the	US.	Does	this	sound	right	to	you?

If	 there	are	major	 issues	with	 this	answer,	where	might	 they	have	come	 from?
Here	are	a	few	ideas:
	

We	 assumed	 /	 calculated	 that	 30%	 of	 households	 have	 children.	 This
probably	isn’t	wildly	off	(it’s	not	going	to	be	5%	or	80%),	but	I	could	see
the	actual	answer	being	anywhere	from	20%	to	60%.
We	assumed	that	30%	of	households	with	kids	have	dogs.	This	was	a	pretty
arbitrary	guess,	and	therefore	subject	to	issues.
We	 assumed	 that	 10%	of	 households	without	 kids	 have	 dogs.	Again,	 this
was	a	pretty	arbitrary	guess.	It	might	be	substantially	off.
We	assumed	that	20%	of	families	with	dogs	have	two	dogs.

Brainstorming	potential	issues,	and	correcting	your	work	if	necessary,	will	be	a
valuable	thing	to	do	in	an	interview.

Actual	Answer
There	are	78.2	million	dogs	in	the	US1.	We	were	off	by	a	factor	of	about	three,
which	isn’t	terrible.	It’s	still	the	right	general	ballpark.	Where	did	we	go	wrong
though?	The	Humane	Society	provides	some	useful	stats:
	

39%	of	households	own	at	least	one	dog.	(We	estimated	16%.)
60%	of	dog	owners	own	just	one	dog.	(We	estimated	80%.)
28%	of	dog	owners	own	two	dogs.
12%	of	dog	owners	own	three	or	more	dogs.
On	average,	dog	owners	own	1.69	dogs.	(We	calculated	1.2	dogs.)

It	 looks	 like	 we	 underestimated	 the	 percent	 of	 households	 with	 dogs	 (16%
overall	 vs.	 39%),	 causing	 a	 difference	 of	 factor	 of	 two.	 We	 also	 slightly

underestimated	 the	 number	 of	 families	 with	 multiple	 dogs.	We	 calculated	 1.2
dogs	per	dog	owner,	when	there	are	actually	1.69	dogs.

Additionally,	our	food	costs	were	off	by	a	factor	of	2.	PetFinder	estimated	that
dog	food	costs	average	about	$250	per	year2.	We	calculated	$500	per	year.

Americans	should	spend	about	$20	billion	on	dog	 food	and	we	calculated	$10
billion.

Question	 2:	 How	many	 tennis	 balls	 can	 fit	 in	 a	 two
bedroom	apartment?
This	question	is	similar	to	a	“classic”	Google	interview	question:	how	many	golf
balls	can	fit	in	a	747	airplane?

Step	1:	Clarify	the	Question
Like	many	questions,	this	one	has	some	ambiguous	or	unstated	components.
	

Are	we	asking	about	a	particular	 two-bedroom	apartment	(which	could	be
of	any	size	really),	or	a	typical	one?	(Assume	we’re	thinking	about	a	typical
apartment.)
In	order	to	understand	what	a	“typical”	two-bedroom	apartment	means,	we
need	to	know	the	location.	Is	this	in	the	US?	Any	particular	part	of	the	US?
(Assume	a	typical	two-bedroom	apartment	in	a	downtown	US	location.)
Are	 we	 asking	 how	 many	 tennis	 balls	 at	 most	 could	 fit	 in	 a	 typical
apartment?	Or	are	we	asking	about	how	many	would	fit	we	just	threw	them
in	at	random?	(Assume	we’re	asking	about	the	max	that	could	fit.)
Does	 the	 two-bedroom	 apartment	 have	 furniture	 in	 it?	How	much?	What
about	people?	(Assume	a	typical	amount	of	furniture,	but	no	people.)
Can	we	 put	 tennis	 balls	 inside	 places	 like	 cabinets?	 (Assume	 no.	All	 the
tennis	balls	will	be	“in	plain	sight.”)

Step	2:	Catalog	What	You	Know	(or	Wish	You	Knew)
The	things	we	know,	or	might	wish	to	know,	include	the	following:
	

The	 size	 of	 a	 typical	 two-bedroom	apartment,	 in	my	 experience,	 is	 about
800	sq.	ft.

A	 typical	 two-bedroom	 apartment	 has	 two	 bedrooms,	 a	 living	 room,	 a
kitchen,	and	a	bathroom.
The	 furniture	 includes:	 two	 queen	 beds,	 two	 dressers,	 four	 side	 tables,	 a
couch,	 a	 loveseat,	 a	 dining	 table	with	 four	 chairs,	 one	 coffee	 table,	 and	 a
TV.
How	 much	 space	 do	 kitchen	 appliances	 take	 up?	 What	 about	 bathroom
appliances?

Step	3:	Make	an	Equation
Our	basic	equation	will	be	fairly	straightforward:

([volume	of	apartment]	-	[volume	of	furniture]	-	[volume	of	appliances]	-	[volume	of

personal	items])	/	[volume	of	a	ball]

	
Step	4:	Think	About	Edge	Cases	and	Sources
We’ve	 already	 gone	 through	 the	 different	 furniture	 and	 appliances	 in	 the
apartment,	so	that	takes	care	of	a	lot	of	potential	issues.	Another	potential	edge
case	could	be	a	messy	person	who	keeps	their	belongings	in	public	view,	rather
than	tucked	away	in	cabinets	and	drawers.

However,	since	we’re	looking	at	typical	usage,	these	edge	cases	shouldn’t	affect
anything.

Step	5:	Break	It	Down
We	now	need	to	break	down	each	part	of	our	equation.

Volume	of	Apartment
Since	the	square	footage	of	an	apartment	is	measured	by	the	interior	area,	walls
or	number	of	rooms	should	not	affect	the	volume.

volume	of	apartment	=	ceiling	height	x	area	of	floor

	
Volume	of	Furniture
The	furniture	in	a	typical	two-bedroom	apartment	will	include:
	

2	queen	beds	(each	of	which	has	a	mattress	and	a	box	spring)
4	night	stands.
1	dining	table.

4	chairs.
1	couch.
1	loveseat.
1	TV.
1	coffee	table.
2	dressers.

We	can	probably	 ignore	 items	 that	are	primarily	 just	a	 frame	(such	as	a	 table),
since	 they	won’t	substantially	 impact	 the	usable	space.	This	reduces	our	 list	of
furniture	 to	 just:	 4	 queen	mattresses	 (the	 bed	 frame	 has	 negligible	 volume),	 1
couch,	1	loveseat,	and	2	dressers.

volume	of	furniture	=

		4	*	volume	of	queen	mattress

+	1	*	volume	of	couch

+	1	*	volume	of	loveseat

+	2	*	volume	of	dresser

	
Volume	of	Appliances	and	Built-In	Furnishings
A	typical	apartment	will	include:
	

Bathtub.
Sink	/	bathroom	cabinet.
Toilet.
Kitchen	cabinet	units	(including	refridgerator).

We	will	 assume	 that	 the	volume	of	 the	bathtub	 and	 toilet	 is	 negligible.	We	do
need	to	consider	the	sink	and	cabinets	though.

volume	of	appliances	=

		volume	of	sink	/	cabinet

+	volume	of	kitchen	cabinets

	
Volume	of	Personal	Items
A	 person’s	 most	 significant	 personal	 items	 by	 volume	 are	 probably	 their
clothing.	Some	will	be	put	away	in	a	dresser	(in	which	case	it	doesn’t	affect	the
usable	volume),	and	other	stuff	will	be	in	the	closet.

volume	of	personal	items	=	%	items	in	closet	*	volume	of	personal	items

	
Volume	of	a	Ball
Many	people	 approach	 this	by	using	 the	volume	of	 a	 sphere.	This	 is	not	quite

correct.	 Unless	 we’re	 grinding	 up	 the	 tennis	 balls	 into	 dust	 (and	 apparently
filling	the	air	inside	the	ball	with	something	first),	the	volume	of	a	sphere	doesn’t
matter.	The	volume	of	a	cube	does.	After	all,	the	balls	have	gaps	between	them.

If	the	balls	are	stacked	with	maximum	efficiency,	then	they	are	stacked	to	look
like	the	following:

We	can	also	roughly	represent	the	stacking	of	balls	like	this:

As	we	can	 see	 in	 this	drawing,	 stacking	 the	balls	 so	 they	overlap	allows	us	 to
stack	more	balls	in	a	given	unit	of	height.	Rather	than	computing	the	volume	of	a
ball,	we	need	to	compute	the	effective	volume	of	a	ball.	That	is,	if	we	imagined
little	blocks	around	each	ball,	how	much	volume	would	that	take	up?

effective	volume	of	ball

=	length	*	width	*	height

=	diameter	of	ball	*	diameter	of	ball	*	adjusted	height

	
Step	6:	Review	&	State	Your	Assumptions
We’ve	got	a	lot	of	things	to	assume	here!	Let’s	update	the	prior	equations	with
the	values	we’ll	assume.

volume	of	apartment

=	ceiling	height	x	area	of	floor

=	12	ft	x	800	sq	ft

=	9600	ft
3

volume	of	furniture

=			4	*	volume	of	queen	mattress

		+	1	*	volume	of	couch

		+	1	*	volume	of	loveseat

		+	2	*	volume	of	dresser

=			4	*	6	ft	*	1	ft	*	6	ft

		+	1	*	6	ft	*	3	ft	*	2	ft

		+	1	*	4	ft	*	3	ft	*	2	ft

		+	2	*	3	ft	*	2	ft	*	4	ft

=	252	ft
3

For	 the	kitchen,	we’ll	assume	it’s	a	10	ft	x	10	ft	 room,	where	 the	cabinets	 line
two	walls,	going	from	the	ground	to	the	counter.

volume	of	appliances

=			volume	of	sink	&	cabinet

		+	volume	of	kitchen	cabinets

=			3	ft	*	2	ft	*	4	ft

		+	2	*	10	ft	*	2	ft	*	3	ft

=	144	ft
3

For	personal	items,	we	can	reflect	on	moves	that	we’ve	done.	How	many	boxes
(2	ft	x	2	ft	x	2	ft)	of	clothing	and	other	items	have	we	packed	up?

volume	of	personal	items

=	%	items	in	closet	*	volume	of	personal	items

=	50%	*	2	people	*	10	boxes	per	person	*	8	cu	ft	per	box

=	80	ft
3

For	 the	 effective	 volume	 of	 a	 ball,	 we	 could	 do	 some	more	 rigorous	math	 to
figure	out	what	 the	adjusted	height	of	 the	“cubed	ball”	will	be.	Or	we	can	 just
look	at	the	figure	and	eyeball	it.

effective	volume	of	ball

=	diameter	of	ball	*	diameter	of	ball	*	adjusted	height

=	2.5	in	*	2.5	in	*	2	in

=	12	in
3

=	1/144	ft3

Careful!	 12	 cubic	 inches	 is	not	 1	 cubic	 foot.	 It’s	 12/(12*12*12)	 cubic	 feet,	 or
1/144	ft3.

Step	7:	Do	the	Math
We’re	basically	all	wrapped	up—just	a	lot	of	arithmetic	to	do.

volume	of	apartment

=	12	ft	x	800	sq	ft

=	12	*	800	cu	ft

=	9600	ft
3

volume	of	furniture	=	252	ft
3

volume	of	appliances	=	144	cu	ft

	

volume	of	personal	items	=	80	ft
3

effective	volume	of	ball	=	1/144	cu	ft.

	
Our	final	answer	is:

usable	volume

=	volume	of	apartment

-	volume	of	furniture

-	volume	of	appliances

=	9600	ft
3
	-	252	ft

3
	-	80	ft

3

=	9250	ft
3

#	balls

=	9250	ft
3
	/	(1/144	sq	ft)

=	1.4	million

	
We	estimate	that	1.4	million	balls	can	fit	in	a	two-bedroom	apartment.

Step	8:	Sanity	Check
Does	 that	1.4	million	balls	sound	high	 to	you?	It	does	sound	a	bit	high	 to	me.
Let’s	do	a	quick	spot	check	of	our	answer	and	ignore	a	lot	of	the	details.

An	800	sq.	ft.	apartment	with	12	ft.	walls	should	be	about	9600	sq.	ft.	If	we	can
fit	 1.4	million	 balls	 inside	 the	 apartment,	 then	 this	means	 about	 140	 balls	 per
cubic	foot.

Does	140	balls	 per	 cubic	 foot	 seem	high?	Not	 so	much.	 If	we	 can	 fit	 about	 5
balls	along	a	foot-long	side,	then	we	can	fit	about	140	balls	in	a	cubic	foot.

Our	math	basically	checks	out.	We’ll	give	our	interviewer	the	final	answer	of	1.4
million	tennis	balls.

Question	3:	How	many	police	officers	are	there	in	the
US?
This	 one’s	 going	 to	 get	 a	 little	 tricky,	 so	 let’s	 get	 started.	 Remember:	 it’s	 the
approach	that	matters,	not	the	final	answer.

Step	1:	Clarify	the	Question
The	 main	 thing	 that’s	 ambiguous	 is	 who	 exactly	 we’re	 counting	 as	 police
officers.	College	 campuses,	 for	 example,	 often	 have	 their	 own	 police	 officers.
There’s	 also	 some	 ambiguity	 over	 whether	 or	 not	 we’re	 considering	 police

officers	who	work	“desk	jobs.”

Let’s	 assume	 that	 we’re	 referring	 to	 all	 police	 officers,	 including	 university
police	officers,	whether	they	work	a	desk	job	or	patrol.

Step	2:	Catalog	What	You	Know	(or	Wish	You	Knew)
We	know:
	

There	are	300	million	people	in	the	US.
More	densely	populated	areas	have	more	police	officers.
There	must	be	police	officers	working	all	day	and	night.
Police	officers	who	patrol	generally	do	so	in	pairs.

We	might	like	to	know	the	following:
	

How	much	crime	is	there	annually	per	capita?
How	many	police	officers	work	a	desk	job,	relative	to	those	on	the	street?
How	many	police	officers	do	you	need	per	person?

The	 last	of	 these,	 in	particular,	would	be	very	nice.	One	way	 to	get	a	ballpark
estimate	for	the	number	of	police	officers	needed	is	to	use	a	specific	example	(a
small	 town	 or	 school,	 for	 example)	 that	 we	 know	 of	 and	 work	 from	 there.
Another	way	might	be	to	ask	what	percent	of	people	employed	could	be	police
officers.	 For	 example,	 it’s	 unlikely	 that	 1%	 of	 the	US	 holds	 a	 job	 as	 a	 police
officer.

Step	3:	Make	an	Equation
One	possible	equation	is	something	like	this:

([population	of	the	US]	/	[#	of	people	per	patrolling	police	officer])	*	(#	of	total

police	officers	per	patrolling	officers)

	
Step	4:	Think	About	Edge	Cases	and	Sources
We’ve	already	covered	the	other	sources	for	police	officers	(campuses,	etc.),	and
ruled	 them	out.	We	will	have	 to	 think	about	how	higher-crime	vs.	 lower-crime
areas	will	affect	the	police	officer	count.

Step	5:	Break	It	Down
We	know	the	population	of	the	US.	The	tricky	parts	will	be	thinking	about	how
many	 people	 there	 are	 per	 patrolling	 police	 officer	 and	what	 the	 ratio	 of	 total
police	 officers	 to	 patrolling	 officers	 is.	 We’ll	 cover	 those	 in	 the	 next	 section
though.	In	this	problem,	there’s	little	to	break	down	in	the	main	equation.

Step	6:	Review	&	State	Your	Assumptions
How	can	we	get	the	number	of	people	per	patrolling	police	officer?	A	few	ways,
depending	on	what	knowledge	or	assumptions	you	might	have:
	

I	 read	 an	 article	 about	 a	 particular	 school	which	had	 about	 2000	 students
and	 4	 police	 officers.	 Schools,	 however,	 need	 a	 minimum	 staff	 to	 guard
doors.	An	even	larger	school	might	have	fewer	police	officers	per	person.
A	small	town	would	need	a	minimum	of	6	police	officers	(3	shifts	per	day
with	2	officers	per	shift).
Most	police	officers	are	male.
At	most,	 I	could	 imagine	 that	1	out	of	every	200	men	are	police	officers.
This	would	mean	about	1	out	of	every	400	people.
There	 are	 probably	 more	 teachers	 than	 police	 officers.	 There	 must	 be	 at
least	 1	 teacher	 for	 every	 school-aged	 child	 (between	 ages	 6	 and	 18).
Roughly	1/8th	of	 the	US	population	 is	between	 those	ages,	 so	 that	means
that	about	1	out	of	every	240	people	is	a	teacher	teaching	kids	between	ages
6	and	18.

These	assumptions	offer	a	bunch	of	different	numbers,	but	 they’re	 in	 the	same
general	ballpark.	We	can	probably	take	a	guess	at	a	number	from	there.	Let’s	go
with	1	patrolling	police	officer	per	500	people.

Now,	 how	 can	 we	 guess	 the	 number	 of	 police	 officers	 per	 patrolling	 officer?
Let’s	 start	 with	 this:	 do	 you	 think	 that	 there’s	 more	 desk	 work	 or	 patrolling
work?	My	guess	is	that	there’s	lots	of	paperwork	for	any	incident.	I’m	going	to
take	 a	 guess	 at	 there	 being	 at	 least	 one	 person	 working	 a	 desk	 job	 for	 every
officer	out	on	the	streets.

Step	7:	Do	the	Math
We	just	have	to	plug	our	assumptions	into	the	equation:

([population	of	the	US]	/	[#	of	people	per	patrolling	police	officer])	*	(#	of	total

police	officers	per	patrolling	officers)

=	(300	million	people	/	500	people	per	patrolling)

		*	(2	officers	per	patrolling	officer)

=	1.2	million	police	officers

	
Step	8:	Sanity	Check
How	can	we	sanity	check	this?	1.2	million	police	officers	means:
	

About	1	out	of	every	300	people	is	a	police	officer.	That’s	slightly	less	than
the	number	of	teachers	of	school-aged	children.
If	 the	vast	majority	of	police	officers	are	male,	 then	about	1	 in	every	150
men	is	a	police	officer.
New	York	City	should	have	about	26,000	police	officers.
San	Francisco	should	have	about	2500	police	officers.

These	all	sound	about	right	to	me,	except	perhaps	for	the	percent	of	men	who	are
police	officers.	That	seems	a	little	high.

Actual	Answer
There	were	about	861,000	police	officers	and	detectives	in	2006.	The	Bureau	of
Justice	Statistics3	offers	the	following	additional	facts:
	

In	 2008,	 local	 police	 departments	 had	 about	 461,000	 officers,	 accounting
for	about	60%	of	all	state	and	local	officers.
Municipal	 and	 township	 police	 departments	 employed	 an	 average	 of	 2.3
full-time	officers	per	1,000	residents.

Not	bad!	We	got	in	the	right	ballpark.

Question	4:	How	many	schools	are	there	in	the	US?
Let’s	assume	we’re	talking	about	public	and	private	schools	from	kindergarten	to
12th	grade.

We	can	calculate	this	by	estimating	the	number	of	students	in	public	vs.	private
school,	and	then	the	average	size	of	each	school.

Assume	 300	 million	 people	 in	 the	 US,	 an	 80-year	 lifespan,	 and	 an	 even
distribution	across	ages.	This	gives	us	about	50	million	school-age	children.

Number	of	Kids	 in	Public	 vs.	Private	Schools:	 This	 is	 the	 tricky	 part.	 Let’s
divide	 the	 US	 population	 into	 lower,	 middle,	 and	 upper	 incomes.	 We’ll
conceptualize	this	as	a	pyramid,	with	50%	lower,	40%	middle,	and	10%	upper.
	

Lower:	 The	 bottom	 half	 of	 the	 US	 will	 generally	 not	 be	 able	 to	 afford
private	school,	so	100%	of	 them	(roughly)	are	 in	public	school.	That’s	25
million	public	school	kids.
Middle:	This	other	40%	has	a	small	number	of	kids	in	private	school.	Let’s
say	10%.	This	is	about	2	million	kids	in	private	school	and	18	million	kids
in	public	school.
Upper:	 In	 the	 wealthiest	 areas	 (top	 10%),	 I	 suspect	 about	 20%	 of	 kids
attend	private	school.	That’s	4	million	kids	 in	public	school	and	1	million
kids	in	private	school.

This	 gives	us	 a	 total	 of	 47	million	public	 school	 kids	 and	3	million	 in	private
school.

Size	of	Public	vs.	Private	Schools:	We	need	to	remember	here	the	variance	in
public	and	private	school	sizes.	Cities	will	tend	to	have	bigger	schools,	but	a	lot
of	the	US	lives	in	smaller	towns	or	suburbs.
	

Public	Schools:	Let’s	assume	that	public	schools	are	divided	into	sections
of	 4	 grades	 each	 on	 average	 (elementary	 school,	 middle	 school,	 high
school).	The	 largest	 public	 schools	might	 have	 as	many	 as	 1000	kids	 per
grade,	 but	 there	 are	 also	 a	 lot	 of	 schools	 that	 are	 smaller	 (particularly	 in
more	rural	areas).	I	suspect	the	average	is	more	like	250	kids	per	grade,	or
1000	kids	per	school.
Private	 Schools:	 Private	 schools	 are	more	 likely	 to	 have	merged	middle
and	 high	 schools,	 so	 it’s	 probably	 more	 like	 5	 grades	 per	 school.	 They
won’t	(can’t)	vary	as	much	in	size.	Private	schools	are	more	like	100	-	150
on	the	large	side	and	50	on	the	small	side.	Let’s	say	an	average	of	75	kids
per	grade,	so	that’s	375	kids	per	school.

Number	of	Schools:	Now	we	just	need	to	pull	these	together.
	

Public	 Schools:	 We	 have	 47	 million	 kids	 and	 1000	 kids	 per	 school,	 so
that’s	47,000	public	schools.

Private	 Schools:	 3	million	 private	 school	 kids	 at	 375	 kids	 per	 school	 is
about	8000	private	schools.

We	have	55,000	schools	in	the	US,	of	which	about	15%	are	private	schools.

Actual	Answer
In	 2008,	 there	 were	 about	 133,000	 schools	 in	 the	 US	 covering	 grades
kindergarten	 through	12th	 grade	 in	 20084.	Of	 those,	 about	 99,000	 (75%)	were
public	schools.

55,000	million	kids	were	 in	 school	 and	a	 little	over	5	million	 attended	private
schools.

Not	surprisingly,	we	were	very	accurate	with	the	number	of	kids	in	school,	and
impressively	close	with	 the	number	of	kids	 in	private	schools.	We	were	a	 little
less	accurate	on	the	number	of	total	schools,	but	still	fairly	close.

Remember	 that	 it’s	 the	 approach	 that	matters,	 not	 the	 final	 answer.	A	problem
like	 this	 is	 highly	 subject	 to	 your	 assumptions.	 If	 you	 assumed	 500	 kids	 per
public	school	class,	your	answer	would	be	much	further	from	the	actual	number,
even	 if	 you’d	 taken	 an	 identical	 approach.	 Fortunately,	 it’s	 the	 approach	 that
matters,	not	the	actual	end	number.

Question	5:	How	long	would	it	take	to	empty	a	hot	tub
using	only	a	drinking	straw?
I’ll	assume	that	someone	is	using	the	straw	by	filling	it	up	and	then	emptying	it
on	 the	 side	 of	 the	 tub	 repeatedly	 (not,	 for	 example,	 using	 it	 as	 a	 hose	with	 a
continuous	stream	of	water).

To	estimate	 this,	we’ll	need	 to	calculate	how	big	a	 typical	hot	 tub	 is,	what	 the
volume	of	a	 typical	straw	is,	and	then	the	 time	to	empty	and	refill	a	straw.	We
could	then	use	the	following	equation:

([volume	of	hot	tub]	/	[volume	of	straw])	*	[time	to	empty	and	fill	straw]

	
This	 doesn’t	 take	 evaporation	 of	 water	 into	 account.	 It	 also	 doesn’t	 take	 into
account	that	water	at	the	bottom	of	the	tub	is	harder	to	reach	and	therefore	might
take	longer.	We’ll	ignore	these	issues	though,	at	least	for	now.

Volume	of	a	Hot	Tub:	We	can	express	the	volume	in	cubic	feet.
	

Depth	of	a	Hot	Tub:	Hot	tubs	have	seats,	which	take	up	some	space.	What
we	really	want	to	know	is	 the	average	depth	of	a	hot	 tub.	If	I	picture	a	6-
foot	person	standing	in	a	hot	 tub,	 the	water	comes	a	bit	above	their	knees
but	well	 below	 their	waist.	 That’s	 probably	 about	 2.5	 feet	 deep	 from	 the
water	surface	to	the	deepest	point.	When	they	sit	though,	it	comes	up	about
halfway	to	their	chest.	That	is	about	1.5	feet	from	the	water	surface	to	the
seats.	The	floor	is	about	half-covered	with	seats,	so	I	think	that	gives	us	an
average	depth	of	around	2	feet.
Length	of	Side:	A	hot	tub	can	(cozily)	fit	about	3	people,	each	of	whom	are
2	feet	wide.	So	a	hot	tub	is	probably	about	6	feet	wide.

The	volume	of	a	hot	 tub	is	 therefore	about	72	cubic	feet	(6	ft	x	6	ft	x	2	ft),	or
about	2	cubic	meters.

Volume	of	a	Straw:	A	drinking	straw	is	probably	about	20	cm	long.	I’d	guess
the	width	is	about	0.5	cm	long,	which	is	a	.25	cm	radius.	Let’s	round	π	(pi)	down
to	3,	and	convert	again	to	metric,	so	we	get	a	volume	of	20	*	(3	*	.252),	or	about
4	cubic	cm.

Dividing	2	cubic	meters	(2,000,000	cubic	cm)	by	4	cubic	cm	gives	us	500,000.
So	it	takes	about	500,000	trips	with	the	straw	to	empty	the	hot	tub.

Filling	and	Emptying	a	Straw:	 Just	 by	 “miming”	 this,	 it	 feels	 like	 this	 takes
about	4	seconds.

We	now	have	an	answer:	500,000	straw	trips	*	4	seconds	=	2,000,000	seconds.

Conversion	 to	days:	We	 can	 convert	 that	 to	 days	 if	 you’d	 like.	 60	 seconds	 /
minute	*	60	minutes	/	hour	gives	us	3600	seconds	per	hour.	Multiply	that	by	24
hours	(multiply	by	10	to	get	36000,	then	double	to	get	70000,	then	increase	by
about	 25%	 to	 get	 about	 90,000)	 and	 we	 get	 around	 90,000	 seconds	 in	 day.
Dividing	 2,000,000	 by	 90,000	will	 give	 us	 a	 little	 over	 20	 days.	 It’s	 probably
about	22	days.

Our	final	answer	is	22	days.

Question	 6:	 How	 many	 pairs	 of	 eyeglasses	 are	 sold

every	year	in	the	US?
I’ll	assume	that	we’re	referring	to	eyeglasses	only,	not	sunglasses.

There	are	about	300	million	people	in	the	US.	Let’s	assume	an	80-year	lifespan
on	average.	Let’s	also	assume	that	people	get	new	frames	every	three	years	on
average.	I	now	just	need	to	calculate	the	number	of	people	with	eyeglasses	in	the
US	and	divide	that	by	three.

We’ll	need	to	break	the	population	down	by	age	since	vision	problems	get	worse
with	 age.	We’ll	 also	 want	 to	 divide	 by	 gender,	 since	 (from	my	 experience)	 a
greater	percent	of	men	with	poor	vision	wear	glasses	 than	women.	Women	are
more	likely	to	wear	contact	lenses.

There	are	also	both	nearsighted	and	farsighted	individuals.	Let’s	separate	by	this
too.

Nearsighted:	 In	 my	 experience,	 very	 few	 young	 children	 are	 nearsighted.
Moreover,	 those	who	 are	 not	 nearsighted	 by	 age	 20	 or	 so	 tend	 to	 have	 stable
vision	for	a	long	time.
	
Age %	of	people	of

this	age	who	are
nearsighted

%	of
nearsighted
men	who	wear
glasses

%	of	nearsighted
women	who
wear	glasses

%	of	people	this
age	with
nearsighted
glasses

<
age
10

0% 0% 0% =	0%

10	-
40

50% 50% 20% =	17.5%

40	-
80

80% 80% 80% =	64%

Weighting	 the	 column	 on	 the	 right	 by	 the	 proportion	 at	 each	 age,	we	 get	 that
about	38%	of	people	are	nearsighted	with	glasses.

Farsighted:	Very	 few	people	 become	 farsighted	 until	well	 into	 adulthood.	By
around	age	60,	 it	 seems	nearly	 inevitable.	Those	who	are	 farsighted	only	need
correction	part	of	the	time	and	thus	tend	to	wear	glasses	instead	of	contacts.

	
Age %	of	people

who	are
farsighted

%	of	farsighted
men	who	wear
glasses

%	of	farsighted
women	who	wear
glasses

%	of	people	this
age	with
nearsighted	glasses

<
age
10

0% 0% 0% =	0%

10	-
40

0% 0% 0% =	0%

40	-
60

50% 90% 90% =	45%

60	-
80

80% 90% 90% =	72%

This	means	that	about	30%	of	people	are	farsighted	with	glasses.

Nearsighted	or	Farsighted:	With	300	million	people	in	the	US,	30%	of	whom
are	farsighted	with	glasses	and	38%	of	whom	are	nearsighted	with	glasses,	this
means	 that	 about	 90	 million	 people	 wear	 farsighted	 glasses	 and	 114	 million
people	 wear	 nearsighted	 glasses.	 That’s	 about	 200	 million	 people	 wearing
glasses.	 (Note	 that	 this	 is	actually	double	counting	some	people—some	people
will	wear	 both	 nearsighted	 glasses	 and	 farsighted	 glasses—but	 that’s	 okay	 for
our	purposes.)

If	each	person	buys	one	pair	of	glasses	every	three	years,	then	there	are	about	67
million	pairs	of	glasses	purchased	each	year.

Question	7:	How	much	does	a	school	bus	weigh?
Let’s	 assume	we’re	 talking	 about	 a	 school	 bus	with	 a	 full	 tank	 of	 gas	 but	 no
children	 on	 it.	We’ll	 also	 assume	 we’re	 talking	 about	 a	 larger	 school	 bus,	 as
opposed	to	a	“short”	bus.

How	big	is	a	school	bus?	A	typical	school	bus	has,	as	I	recall,	about	15	rows	of
seats.	 I	 think	each	seat	 is	about	3	 feet	away	 from	each	other,	 so	 that’s	45	 feet,
plus	some	extra	room	for	the	driver.	Let’s	figure	about	50	feet.

A	bus	is	a	little	wider	than	a	car,	but	can’t	be	much	wider	or	it	wouldn’t	fit	on	the
road.	That	makes	it	about	six	feet	wide.

Let’s	break	down	the	different	components	of	a	bus	and	calculate	the	weight	of
each.	We	have	seats,	a	gas	tank,	tires,	windows,	an	engine,	and	the	frame.

Seats:	There	are	15	rows	of	seats,	with	2	seats	on	each	side,	so	 that’s	30	seats
total.	 The	 seats	 are	 made	 from	 fairly	 sturdy	 metals,	 I	 believe,	 so	 they’re	 not
going	 to	be	 super	 light.	 I’d	guess	 they	would	be	about	50	 lbs.	 each.	The	 seats
therefore	will	be	about	1500	lbs.	total.

Gas	 Tank:	 I	 think	 my	 car	 holds	 about	 20	 gallons	 of	 gas,	 but	 a	 bus	 would
probably	have	a	much	 larger	 tank.	Let’s	say	 it’s	 three	 times	 larger.	That’s	a	60
gallon	tank.	I	think	a	gallon	of	water	is	around	10	lbs.,	so	let’s	assume	gas	is	the
same	weight.	So	that’s	600	lbs.	of	gas.

Tires:	A	larger	bus	probably	has	three	rows	of	 tires,	with	two	on	each	side,	so
that’s	6	tires.	I’ve	lifted	a	car	tire	before	and	remember	it	wasn’t	too	heavy.	Let’s
say	a	car	tire	is	about	20	lbs.	A	bus	tire	is	larger	though,	so	maybe	30	lbs.	With	6
tires,	that	gives	us	about	180	lbs.

Bus	Windows:	Each	window	is	about	2	ft.	 tall,	I	 think.	If	we	treat	the	left	and
right	 sides	 as	 having	 a	 continuous	 window	 (which	 is	 mostly	 correct),	 this	 is
about	90	sq.	ft.	(45	ft.	x	2	ft.)	of	window	on	each	side.	If	we	add	in	the	windows
at	the	front	of	the	bus	(about	6	ft.	x	4	ft.)	and	the	back	of	the	bus	(about	2	ft.	x	6
ft.),	 this	gets	us	an	additional	36	ft.	of	windows.	All	in	all,	we’re	talking	about
216	sq.	ft.	of	windows.

How	much	does	a	window	weigh	though?	Having	lifted	glass	table	tops	before,
I’ve	found	that	a	3	ft.	x	3	ft.	piece	of	glass	is	fairly	easily	lifted,	but	still	heavy.
I’d	guess	that	that’s	about	40	lbs.	This	gives	us	an	estimate	of	about	4	lbs.	per	sq.
ft.

So	216	sq.	ft.	of	windows	at	4	lbs.	per	sq.	ft.	would	be	about	850	lbs.

Engine:	This	is	tricky	to	guess	since	I	don’t	have	much	experience	with	engines.
I’d	guess	though	that	you’d	need	two	or	three	strong	people	to	lift	a	car	engine.
If	each	person	can	lift	100	lbs.,	that	gives	us	a	guess	of	about	300	lbs.	Again,	a
bus	will	have	a	substantially	larger	engine,	so	let’s	say	about	500	lbs.	for	a	bus
engine.

Bus	Frame:	This	is	probably	the	hardest	part	as	I	don’t	really	know	how	much
metal	weighs.	We	have	a	metal	frame	below,	which	is	about	45	ft.	long	by	6	ft.

wide.	This	needs	 to	be	 fairly	 thick.	 I	would	guess	 that	1	sq.	 ft.	of	 the	 frame	 is
about	30	lbs.,	so	that’s	about	8000	lbs.	for	the	bottom.

The	top	doesn’t	need	to	be	quite	so	thick,	so	let’s	say	about	4000	lbs.

Each	side	of	the	bus	is	about	6	ft.	tall	and	45	ft.	long.	If	we	go	with	an	estimate
of	15	lbs.	per	sq.	ft.,	that’s	about	4000	lbs.	per	side,	or	8000	lbs.	across	the	two
sides.

The	front	and	back	of	the	bus	is	6	ft.	tall	and	6	ft.	wide.	I’d	guess	we	need	fairly
sturdy	metal	 there,	 so	 let’s	 again	 assume	30	 lbs.	 per	 square	 foot.	That’s	 about
1000	lbs.	for	the	front	and	the	back,	or	2000	lbs.	together.

Our	entire	frame	is	then	about	22,000	lbs.

Total:	We	have	a	22,000	lbs.	frame,	500	lbs.	for	the	engine,	850	lbs.	of	windows,
180	lbs.	of	tires,	600	lbs.	of	gas,	and	1500	lbs.	of	seats.	In	total,	that’s	25,630	lbs.
I	think	a	car	is	about	3000	lbs.,	so	25,000	lbs.	for	a	school	bus	seems	like	it’s	in
the	right	ballpark.

Actual	 Answer:	 Depending	 on	 the	 size,	 a	 school	 bus	 can	 be	 anywhere	 from
10,000	 lbs.	 to	36,000	 lbs.	A	 typical	62-passenger	bus	(about	what	we	assumed
here)	is	around	20,000	lbs.,	without	gas.

Question	 8:	 How	 many	 basketballs	 are	 purchased
every	year	in	the	US?
Basketballs	 are	 purchased	 by	 schools,	 (non-school)	 teams,	 and	 families.	 Let’s
calculate	 how	many	basketballs	 are	 owned	by	 each	 group	 and	 then	 estimate	 a
replacement	rate.

I’ll	assume	that	basketballs	purchased	by	adults	for	their	own	use	(not	for	their
kids)	is	negligible.

Families:	There	are	about	45	million	kids	aged	6	-	18	in	the	US.	Let’s	assume
that	families	without	kids	are	unlikely	 to	own	basketballs,	and	each	family	has
an	average	of	2	kids.	This	means	that	there	are	about	20	million	households	with
kids.

I’d	guess	that	one	fourth	of	households	with	kids	have	a	basketball,	and	they	buy

one	basketball	per	year	on	average.	This	is	about	5	million	basketballs	per	year.

Schools:	My	high	school	had	about	50	basketballs	for	a	500-person	school.	With
constant	usage,	each	ball	probably	didn’t	last	more	than	three	months.	There	are
nine	 months	 in	 the	 school	 year,	 so	 this	 means	 we	 went	 through	 about	 150
basketballs	per	year	for	500	kids.

However,	my	school	was	better	funded	than	most	schools	in	the	US.	A	ratio	of
50	basketballs	per	500	high	schoolers	might	be	more	realistic.

We	should	actually	adjust	our	number	downwards	even	more	since	elementary
schools	won’t	use	as	many	basketballs.	Let’s	figure	then	about	25	basketballs	for
every	500	kids,	or	1	basketball	for	every	20	kids.

With	 45	 million	 kids,	 this	 means	 about	 2	 million	 basketballs	 purchased	 by
schools	every	year.

Teams:	There	are	a	variety	of	teams	in	the	US:	kids	teams,	professional	teams,
adult	intramural	teams,	college	teams,	and	school	teams.	We’ve	already	included
school	purchases,	so	we	don’t	need	to	recount	those.
	

Kids	teams:	If	we	assume	that	1%	of	kids	play	on	a	basketball	team	and	a
basketball	 team	 has	 about	 10	 kids	 per	 team,	 then	 there	 are	 about	 45,000
kids’	basketball	teams	in	the	US.	If	each	team	buys	10	basketballs	per	year
(one	per	player),	then	this	is	about	450,000	basketballs.
Professional	teams:	This	should	be	negligible.
Adult	intramural	teams:	This	should	be	negligible.
College	teams:	There	are	about	15	million	college-age	people	in	the	US.	Of
those,	maybe	5%	play	a	college	sport,	and	for	5%	of	those	people	that	sport
is	basketball.	Thus	there	are	about	37,500	college	basketball	players	in	the
US.	 If	we	again	assume	a	purchase	of	one	basketball	per	player	per	year,
this	is	37,500	basketballs.

This	gives	us	about	500,000	basketballs	purchased	for	teams.

We	have	accounted	 for	5	million	home	purchases,	 2	million	 school	purchases,
and	 500,000	 team	 purchases.	 This	 gives	 us	 a	 total	 of	 about	 7.5	 million
basketballs	purchased	every	year.

Question	 9:	 How	 much	 money	 do	 people	 spend	 on
haircuts	every	year	in	the	US?
Observe	 first	 that	 the	 price	 of	 a	 haircut	 can	 vary	 dramatically.	A	 haircut,	 plus
dyeing	of	hair	(common	for	women),	can	be	$200	or	more	at	a	nice	salon.	On	the
other	hand,	a	man’s	haircut	at	 a	cheaper	barber	might	be	as	 low	as	$10.	We’ll
need	to	consider	this	in	our	answer.

We	can	assume	that	men	get	 their	hair	cut	12	 times	per	year	 (once	per	month)
and	women	get	their	hair	cut	about	5	times	per	year.

I’d	guess	that	about	two-thirds	of	people	(adults	and	children)	get	their	hair	cut
professionally,	 with	 the	 remainder	 getting	 their	 hair	 cut	 at	 home	 or	 through	 a
friend.	 This	 gives	 us	 about	 100	 million	 men	 and	 100	 million	 women	 using
professional	hair	cutters.

Therefore,	 we	 have	 about	 1.2	 billion	 male	 haircuts	 and	 500	 million	 female
haircuts	per	year.

I	 rarely	 see	men	 in	 nice	 salons,	 so	we	 can	 assume	 that	 virtually	 all	 of	 the	 1.2
billion	 male	 haircuts	 take	 place	 at	 a	 cheaper	 haircutting	 place.	 If	 the	 average
price	of	a	haircut	there	is	$20,	then	we	have	about	$24	billion	spent	by	men	on
haircuts.

Many	more	women	go	to	nicer	salons	for	their	haircut.	Let’s	suppose	that	20%
of	 women	 go	 to	 nice	 salons	 for	 their	 haircut	 and	 that	 those	 haircuts	 cost	 an
average	of	$100	each.	This	means	 that	 the	average	woman’s	haircut	costs	$36.
Women	therefore	spend	about	$18	billion	on	haircuts	every	year.

Combined,	that’s	about	$40	billion	on	haircuts	each	year.	However,	I	think	that
was	overestimating	a	bit.	 I	 suspect	about	25%	of	 the	US	doesn’t	need	haircuts
because	they’re	bald,	small	children,	and	so	on.	The	number	is	probably	closer	to
$25	million.

Question	10:	How	much	money	does	Facebook	make
in	ads	every	year?
I	remember	seeing	reports	not	too	long	ago	that	Facebook	has	about	one	billion
users.	However,	many	of	those	accounts	might	not	be	active.	Let’s	assume	that
50%	of	those	accounts	are	actually	active	and	the	active	users	log	into	Facebook

about	once	per	day	on	average.

This	means	that	Facebook	has	about	500	million	visits	per	day.	The	average	visit
is	probably	about	10	minutes	and	has	about	10	pageviews.	This	gives	us	a	figure
of	5	billion	pageviews	per	day.

If	each	page	has	four	ads	on	it,	then	Facebook	shows	about	20	billion	ads	every
day.

As	I	recall,	click-through	rates	for	search	ads	on	Google	are	usually	about	2%,
but	I	also	know	that	search	ads	get	substantially	more	clicks	than	display	ads.	If
we	assume	a	10x	difference	between	search	ads	and	display	ads,	then	we	have	a
click-through	rate	of	about	0.2%.

This	gives	us	a	total	of	about	40	million	clicks	per	day.

How	much	revenue	does	each	click	generate?

I	know	Google	search	ads	rarely	generate	less	than	5	cents	per	click	but	they	can
generate	 as	much	 as	 $10	 per	 click.	 This	 is	 a	 huge	 range,	 of	 course.	 From	my
experiments	with	ads,	 I	 found	 that	 I	was	paying	about	25	cents	per	click.	This
was	probably	for	a	slightly	cheaper-than-average	market	segment	though.	Let’s
figure	about	50	cents	per	click	on	average.	I’m	assuming	here	that	Facebook	ads
are	 equivalent	 to	 Google	 ads,	 which	 could	 possibly	 be	 an	 unfair	 assumption.
Let’s	work	with	that	for	now	though.

40	million	clicks	per	day	at	50	cents	per	click	is	about	$20	million	per	day.	This
means	about	$7	billion	dollars	in	revenue.

This	sounds	about	right	 if	we	look	at	salary	costs.	 If	Facebook	has	about	5000
employees,	each	of	whom	probably	earns	about	$100k	in	salary	on	average,	then
this	is	$500	million	in	salary	costs.	It	seems	reasonable	to	think	that	Facebook’s
revenue	is	10	-	20x	its	salary	costs.

Actual	Answer:	Facebook’s	annual	revenue	was	$5.1	billion	in	2012,	about	$4.3
billion	of	which	was	from	ads.

1	“Pets	by	the	Numbers.”	Human	Society.	27	September,	2013.

2	How	much	does	owning	a	pet	cost	in	a	year?”	Kay,	Liz	F.	12	February	2012.

Bankrate.com.

3	“Local	Police.”	Bureau	of	Labor	Statistics.	10	November	2013.

4	 “Digest	 of	 Education	 Statistics:	 2010.”	 National	 Center	 for	 Education
Statistics.	April	2011.

Product	Questions
Chapter	14

When	 Jessica	 interviewed	 at	 Apple	 for	 a	 role	 with	 iTunes,	 she	 was	 asked	 a
simple,	 benign	 question:	 “What	 do	 you	 think	 of	 iTunes?	 What	 would	 you
change?”	She	was	well	prepared	for	this	question,	as	she	loved	music.

She	 immediately	 began	 listing	 a	 bunch	 of	 features	 she	 would	 implement	 or
change.	Better	 keyboard	navigation.	Easier	 ability	 to	 cancel	 downloads.	Better
search	in	the	iTunes	store.	The	list	went	on	and	on.

She	had	a	lot	of	opinions	and	her	 ideas	were,	on	the	whole,	fairly	good.	When
she	 didn’t	 get	 the	 next	 interview,	 she	 figured	 the	 interviewer	was	 hurt	 by	 her
being	too	harsh.

Not	exactly.

It’s	okay	to	love	or	to	hate	a	product,	but	you	need	to	do	it	the	right	way.

About	the	Product	Question
The	product	question	is	the	heart	and	soul	of	the	PM	interview.	It	directly	gets	at
what	a	PM	does:	design,	build,	and	improve	products.

These	questions	come	in	three	common	forms:
	

1.	How	would	you	design	_________?	For	example,	you
might	be	asked	to	design	an	alarm	clock	for	the	blind.

2.	What	would	you	improve	about	____________?
3.	What’s	your	favorite	product	and	why?

While	 these	 questions	 sound	different,	 they	have	one	very	 important	 aspect	 in
common:	You	need	 to	understand	and	focus	on	 the	goal.	The	goal	might	be	 to
design	the	best	product	for	the	user	or	it	might	be	to	increase	revenue	or	another
metric.

Type	1:	Designing	a	Product
These	 questions	 aren’t	 nearly	 as	 open-ended	 as	 they	 sound.	 You	 want	 to
approach	these	questions	like	a	good	PM	would:	with	a	structured	approach	that
starts	with	the	user.

Remember:	 it’s	not	about	what	you	want	 the	product	 to	be.	 It’s	about	what	 the
user	wants.

The	Approach
We’ve	offered	one	framework	that	works	well	for	these	problems,	but	there	are
other	 frameworks	 too.	Good	 frameworks	 have	 the	 following	 in	 common:	 they
ask	 appropriate	 questions,	 understand	 and	 assess	 a	 goal	 (often	 a	 good	 user
experience),	and	apply	a	structured	approach	to	accomplish	that	goal.

Step	1:	Ask	questions	to	understand	the	problem
Before	 you	 can	 even	 start	 to	 answer	 the	 question,	 you	need	 to	make	 sure	 you
understand	what	the	question	is.	It	might	not	be	what	you	think.

For	 example,	 suppose	 you	 were	 asked,	 “Design	 a	 pen.”	 That’s	 a	 pretty
straightforward	question,	right?	Not	necessarily.

The	pen	could	be:
	

A	permanent	marker,	designed	to	not	come	off	in	the	laundry.
A	pen	that	uses	ink	that	only	shows	up	under	special	lighting.
A	pen	for	astronauts	to	use	in	space.
A	pen	for	children	to	use	in	the	bathtub.
A	pen	for	scuba	divers	to	use.

Clearly,	each	of	those	people	would	need	a	very	different	pen.	They	would	need
a	different	size,	color,	and	feature	set.

Are	they	trying	to	trick	you?	Yep,	in	a	sense.	However,	a	PM	who	just	dives	into
creating	a	product	without	understanding	the	goals	might	create	something	that
is	radically	different	from	what	the	user	needs.

Step	2:	Provide	a	structure
Interviewers	are	looking	for	structured	thinking.	The	easiest	way	to	show	this	is
to	give	a	structured	answer	and	call	out	which	part	of	the	structure	you’re	on.	For
example,	you	might	say	something	like,	“First	I’m	going	to	talk	about	the	goals.
Then,	I’m	going	to	list	out	some	potential	features.	Finally,	I’m	going	to	evaluate
each	of	those	features	against	the	goals.	Okay,	so	starting	with	the	goals...”.

This	 will	 communicate	 to	 your	 interviewer	 that	 you	 approach	 problems	 in	 a
structured	 way.	 It	 will	 also	 help	 keep	 your	 thoughts	 and	 those	 of	 your
interviewer	straight.

Step	3:	Identify	the	users	and	customers
Now	that	you	understand	the	question	itself,	you	should	identify	who	the	users
and	customers	are.	Ask	more	questions	if	you	need	to.

In	some	cases,	the	users	and	customers	aren’t	the	same	person.	The	customer	is
the	person	paying	for	the	product;	the	user	is	the	one	using	it.	There	also	may	be
multiple	users.

Example:	“Design	a	calculator	for	kids”
In	this	case,	the	interviewer	has	told	us	who	the	user	is.	Or	have	they?	There	are,
of	course,	many	kids	in	the	world	and	they’re	not	all	the	same.	The	child	is	also
not	the	only	user.

We	have	the	following	potential	users	or	customers:
	

The	child:	The	child	is	the	primary	user	of	the	calculator.	You	will	need	to
know	 children’s	 ages.	 A	 calculator	 for	 seven	 year	 olds	 will	 look	 very
different	from	a	calculator	for	high	schoolers.
The	 teacher:	 If	 this	 is	 a	 calculator	 used	 in	 schools	 or	 for	 an	 academic
purpose,	then	the	child’s	teacher	will	likely	need	to	use	the	calculator	or	at
least	understand	how	it	works.
The	parent:	The	parent	may	use	the	calculator	when	helping	a	child	with
homework,	and	they	are	likely	paying	for	the	calculator	as	well.	This	makes
the	parent	both	a	user	and	the	customer.

Depending	 on	 the	 type	 of	 calculator,	 there	 could	 be	 even	 more	 users.	 For
example,	if	the	calculator	is	designed	specifically	for	a	textbook,	then	you	might

also	 include	 textbook	 publishers.	 Or,	 if	 the	 calculator	 is	 being	 used	 within	 a
classroom,	 the	 school	 or	 school	 district	 might	 be	 the	 purchaser.	 This	 might
require	special	consideration.

Example:	“Design	a	better	stove”
As	with	the	“design	a	pen”	example,	 the	stove	could	be	a	bit	different	than	we
imagine.	Is	it	for	household	usage?	For	a	large	restaurant?	For	kids?	We’ll	need
to	ask	questions	to	figure	this	out.

Let’s	suppose	there’s	nothing	funky	going	on	here.	We’re	just	designing	a	stove
for	 normal	 home	 usage.	 Still,	 we’ll	want	 to	 think	 about	 the	 different	 types	 of
users.	This	could	include:
	

Novice	Cooks:	These	people	are	new	to	cooking	and	may	want	something
simpler.
Advanced	 Cooks:	 These	 people	 are	 more	 advanced	 and	 might	 want	 a
bunch	of	advanced	settings.
Children:	 Even	 if	 children	 aren’t	 using	 our	 stove,	 they’re	 still	 around	 a
household.	A	good	household	stove	can’t	pose	a	safety	danger	to	children.
Elderly	 or	 Disabled:	 Elderly	 or	 disabled	 people	 might	 have	 slightly
different	requirements	since	 their	physical	mobility	 is	 limited.	They	might
also	have	special	meals	or	cooking	needs.

Each	of	these	people	will	have	different	requirements.

Thinking	about	Users
With	each	question,	 think	about	where	 the	product	 is	being	used	and	who	else
might	interact	with	it.	As	a	good	rule	of	thumb:
	

Children’s	 products	 may	 be	 used	 by	 children,	 their	 parents,	 and	 their
teachers.	The	parent	or	the	school	might	be	the	customer.
Healthcare	products	(including	products	for	people	with	disabilities)	might
be	used	by	patients,	doctors,	and	insurance	companies.
Sports-related	products	might	be	used	by	athletes	and	their	coaches.
Products	 for	 a	 professional	 (e.g.,	 accounting	 software)	might	 used	 by	 the
professional,	her	assistant,	and	others	in	her	company.

We	have	to	design	for	all	of	those	people,	so	it’s	important	to	call	out	who	they

are.

Step	4:	What	are	the	use	cases?	Why	are	they	using	this
product?	What	are	their	goals?
For	each	user	(if	there’s	more	than	one),	make	a	list	of	the	use	cases.	This	is	a	list
of	the	different	tasks	or	scenarios	that	a	user	might	want	to	use	the	product	for.

For	example,	if	we’re	designing	a	keychain	for	the	elderly,	the	use	cases	might
include:
	

Locating	the	right	key	in	the	keychain	to	open	their	house,	enter	their	car,
etc.
Adding	a	new	key	to	the	keychain.
Removing	a	key	from	the	keychain.
Finding	the	keys	in	the	bag.
Finding	the	keys	in	their	house.

You’ll	need	to	assess,	either	by	yourself	or	by	discussing	the	situation	with	your
interviewer,	which	use	cases	to	design	for.	You	might	decide	that	all	of	them	are
very	important,	or	you	might	decide	that	some	use	cases	are	less	important	than
others.

You	can	also	think	about	these	goals	at	a	higher	level.	You	can	think	about	not
only	what	 you	 do	 with	 a	 product,	 but	why	 you	 do	 it.	What	 is	 the	 underlying
motivation?	For	example,	 the	underlying	motivation	for	 the	keychain	might	be
independence.

You	want	to	convince	your	interviewer	that	your	product	will	change	the	world
by	appealing	to	the	underlying	motivations,	goals,	and	use	cases.

Step	 5:	How	well	 is	 the	 current	 product	 doing	 for	 their
use	cases?	Are	there	obvious	weak	spots?
Go	through	each	use	case	and	assess	how	well	the	current	products	or	solutions
address	those.	What	are	the	user’s	biggest	issues	with	the	product?	These	are	the
areas	you	will	focus	your	design	on.

If	there	are	multiple	users	(for	example,	the	elderly	person	and	their	caretaker),

we	may	need	to	assess	their	use	cases	separately.

In	many	cases,	and	especially	when	you	get	a	question	in	the	form	of	“Design	a
_______	for	the	_______,”	it	can	be	useful	to	think	carefully	about	what	makes
this	 type	 of	 user	 special.	 For	 example,	 an	 elderly	 person	 often	 has	 limited
mobility	and	dexterity,	but	 they	are	about	more	 than	 just	 their	 limitations;	 they
also	have	particular	values.	They	might	care	deeply	about	family	connections,	or
prioritize	healthcare	or	stability.	We’ll	need	to	keep	this	in	mind	for	our	design.

Step	 6:	 What	 features	 or	 changes	 would	 improve	 those
weak	spots?
Up	until	now,	we’ve	just	been	assessing	the	current	problem	and	needs.	It’s	good
we	spent	all	 that	 time	defining	 the	problem.	This	will	help	us	come	up	with	a
solution	 that’s	 truly	 tailored	 to	 their	 needs,	 rather	 than	 to	what	 you	 personally
would	want.

In	many	cases,	we	will	want	to	solve	the	issues	with	multiple	use	cases	at	once.
For	example,	the	solution	to	adding	a	key	to	the	keychain	is	very	closely	tied	to
the	solution	to	remove	a	key	from	the	keychain.

A	 good	 way	 to	 handle	 this	 section	 is	 to	 name	 a	 few	 ideas	 and	 then	 ask	 the
interviewer	if	they	want	you	to	dive	deeper	into	any	of	them.

Make	sure	to	explicitly	tie	your	feature	ideas	to	the	use	cases	or	goals.	Make	it
really,	 really	clear	you’re	coming	up	with	 ideas	 that	 are	customer	 focused,	not
just	things	you’ve	always	wanted.

If	you	start	to	run	out	of	ideas,	go	back	to	your	use	cases	and	be	willing	to	get	a
little	more	creative.	If	 the	interviewer	really	seems	to	expect	you	to	have	more
ideas,	ask	if	there	are	any	that	she	thinks	you	didn’t	explore	sufficiently.

This	is	a	good	spot	to	use	the	whiteboard	as	well.

Step	7:	Wrap	things	up
As	 a	 final	 step	 in	 the	 interview,	 it	 can	 be	 useful	 to	 give	 the	 interviewer	 an
overview	of	your	solution.	This	is	especially	important	if	you’ve	been	talking	for
a	while.	 You	might	 have	 gone	 over	many	 solutions	 to	 the	 problem,	 and	 your
interviewer	may	be	unclear	as	to	your	current	proposal.

If	you	haven’t	touched	the	whiteboard	yet,	this	may	be	a	good	time	to	do	so.

Example:	Design	an	Alarm	Clock	for	the	Blind
Let’s	walk	through	this	problem	step	by	step.	Note	that	this	is	only	one	solution.
There	are	many	ways	to	respond	to	this	question.

Step	1:	Ask	questions	to	understand	the	problem
In	this	situation,	we’re	told	explicitly	who	the	user	is.	However,	this	information
may	be	only	half	true.

What	kind	of	blind	person?	Many	people	who	are	blind	can	detect	light	or	even
see	 blurry	 shapes.	 Second,	 blind	 people	 can	 be	 children,	 adults,	 or	 elderly
people.	 They	 may	 even	 have	 additional	 disabilities.	 If	 we’re	 designing	 for	 a
specific	type	of	blind	person,	this	will	affect	our	product.

We	should	also	understand	where	the	blind	person	is	using	the	alarm	clock.	Will
this	be	an	alarm	used	at	home,	or	perhaps	one	 for	 travel?	 Is	 it	even	a	physical
alarm	clock,	or	could	the	interviewer	be	asking	about	a	mobile	app	designed	for
blind	people?

Let’s	 assume	 our	 interviewer	 confirms	 he’s	 thinking	 of	 a	 fully	 blind	 person—
zero	ability	to	see—and	that	he	would	like	us	to	design	for	a	blind	adult	who	will
be	using	a	physical	alarm	clock	at	home.

Step	2:	Provide	a	structure
The	 approach	 in	 this	 problem	 is	 essentially	 the	 structure	 we	 offer	 to	 the
interviewer.

Okay,	now	that	I	understand	the	problem,	I’m	going	to	tackle	this	in	a	few
parts.	First,	 I’ll	 think	about	who	 the	users	are	and	what	 they’re	using	 the
alarm	 clock	 for.	 Second,	 I’m	 going	 to	 compare	 existing	 alarm	 clocks
against	these	use	cases	to	see	where	the	gaps	are.	Then	finally,	I’m	going	to
discuss	how	we	can	fill	in	these	gaps.

As	you	go	 through	 these	 steps,	make	 it	 clear	 to	your	 interviewer	when	you’re
transitioning	from	one	step	to	the	next.	You	could	say	something	like,	“Now	that
we’ve	identified	the	users,	let’s	move	on	to	evaluating	existing	alarm	clocks.”

Phrasing	Questions
Be	 careful	 about	 how	you	 phrase	 your	 questions.	A	 question	 like,	 “What
does	 the	 blind	 person	 do?”	 can	 sound	 like	 you	want	 your	 interviewer	 to
solve	problems	for	you.	However,	 if	you	word	 it	as	“Is	 there	anything	we
know	about	what	a	blind	person	does?”	makes	it	clear	you’re	trying	to	work
collaboratively	with	your	interviewer.

If	 your	 interviewer	 pushes	 back	 with	 a	 question	 such	 as	 “What	 do	 you
think?”	that’s	a	sign	to	stop	pushing	with	the	questions.

	

Step	3:	Identify	the	users	and	customers
We	have	one	user	in	mind	already:	a	fully	blind	adult.

Who	else	might	use	the	alarm	clock?	A	blind	person	is	likely	around	non-blind
people,	such	as	their	spouse,	children,	or	healthcare	workers.	Could	you	imagine
if	your	spouse	bought	an	alarm	clock	that	you	couldn’t	turn	off?	Yikes!	An	alarm
clock	for	the	blind	still	needs	to	be	moderately	usable	by	non-blind	people.

Step	4:	What	are	the	use	cases?	Why	are	they	using	this
product?
The	 core	 use	 case	 here	 is	 presumably	 to	 wake	 up	 from	 sleep,	 usually	 in	 the
morning	 but	 possibly	 for	 naps	 as	 well.	 This	means	 he’ll	 need	 to	 check	 if	 the
alarm	is	set,	configure	the	time,	enable	the	alarm,	be	woken	up	by	it,	snooze	the
alarm,	and	disable	it.

Could	there	be	other	reasons	why	the	blind	person	uses	the	product?	Sure!
	

He	could	be	using	it	to	check	the	current	time.
He	could	be	using	it	to	time	something	(e.g.,	boiling	an	egg).	After	all,	not
all	 his	 appliances	 will	 be	 adapted	 for	 his	 disability,	 so	 he	 might	 use	 the
alarm	clock	to	compensate.
He	could	be	using	it	to	remind	himself	to	take	medicines.	In	this	case,	he’ll
probably	need	some	sort	of	recurring	alarm.
He	may	be	using	it	to	listen	to	music	or	the	radio,	as	many	people	do	with
their	alarm	clocks.

I’ll	 assume	 the	 primary	 function	 we	 want	 to	 design	 for	 is	 the	 wake-up-from-
sleep	one.

Checking	the	current	time	is	certainly	an	important	use	case	for	alarm	clocks	in
general,	but	it	may	not	be	an	essential	one	for	blind	people.	People	use	an	alarm
clock	to	check	the	time	because	it’s	highly	convenient	(that	is,	the	time	is	right
there,	 staring	 at	 them	 from	 across	 the	 room).	 Unless	 we	 can	 achieve	 similar
convenience,	 blind	 people	 probably	 wouldn’t	 use	 the	 alarm	 clock	 for	 this
purpose.	They	would	default	to	using	whatever	they	otherwise	use	to	check	the
time.

Step	 5:	How	well	 is	 the	 current	 product	 doing	 for	 their
use	cases?	Are	there	obvious	weak	spots?
A	 standard	 alarm	 clock	 relies	 on	 visual	 indicators	 for	 almost	 everything.	 We
know	if	the	alarm	is	on	or	off	based	on	a	light	on	the	alarm	clock.	We	know	the
current	 time	 because	we	 can	 read	 it	 on	 the	 display.	We	 just	 look	 at	 the	 alarm
clock	to	know	if	the	device	is	plugged	in.	Essentially,	the	only	thing	we	don’t	use
a	visual	indicator	for	is	waking	up.

This	poses	a	number	of	challenges	for	a	blind	person,	since	he	won’t	be	able	to
see	the	visual	indicator.
	

Enabling	/	disabling	the	alarm:	Alarms	commonly	have	a	single	button	to
toggle	the	alarm;	press	the	“alarm	set”	button	to	flip	the	state.	This	is	fine
when	you	can	see	if	the	alarm	is	set,	but	it’s	likely	to	be	problematic	for	a
blind	person.	Toggling	the	state	of	something	only	works	well	if	the	current
state	is	very	obvious.
Ensuring	the	alarm	is	plugged	in:	Electronics	can	get	unplugged	for	any
number	 of	 reasons.	Simply	giving	 the	 blind	person	 a	way	 to	 check	 if	 the
alarm	 is	 plugged	 in	 might	 not	 be	 enough,	 since	 they	 probably	 won’t
remember	 to	 check	 this	 option	 before	 going	 to	 bed.	 Rather,	 we	 need	 to
make	it	obvious	that	the	alarm	is	unplugged.
Checking	 if	 the	 alarm	 is	 set:	A	 standard	 alarm	 clock	 has	 a	 light	 on	 the
display	to	indicate	whether	the	alarm	is	enabled.	This	won’t	work	for	blind
people	since	they	can’t	see	the	indicator	light.
Setting	 the	alarm:	 A	 standard	 alarm	 clock	 is	 set	 by	 pushing	 an	 “up”	 or
“down”	button	on	the	time,	and	waiting	until	the	time	is	set	correctly.	Since

a	blind	person	can’t	read	the	clock,	the	visual	feedback	on	the	time	doesn’t
really	help	them.
Setting	 /	 checking	 the	 current	 time:	Although	we	don’t	need	 to	use	 the
alarm	clock	to	check	the	time,	we	do	need	to	ensure	the	current	time	is	set
correctly.	 Since	 a	 standard	 alarm	 clock	 relies	 on	 a	 visual	 display	 for	 the
time,	this	doesn’t	work	well	for	blind	people.

We	now	need	to	resolve	these	issues.

Step	6:	What	features	would	improve	those	weak	spots?
We	want	to	keep	the	alarm	clock	simple	to	use.	Complicated	designs	are	no	fun
for	anyone,	blind	or	not.

Design	1:	Audio	Playback
The	major	 issue	we’ll	need	to	design	around	is	 the	lack	of	visual	display.	As	a
very	simple	approach,	we	can	use	audio	playback,	in	addition	to	a	visual	display.

The	 benefit	 here	 is	 it’s	 easy	 to	 build	 audio	 playback,	 and	 the	 use	 of	 a	 visual
display	would	make	the	design	usable	for	non-blind	people	as	well.

However,	it	has	a	major	drawback:	it	might	wake	up	the	blind	person’s	partner	or
spouse.	We’ll	work	with	this	approach	for	now,	though.

Turning	on	/	off	alarm	+	Ensuring	the	alarm	is	plugged	in
Like	a	standard	alarm	clock,	this	alarm	clock	could	have	a	button	that	turns	the
alarm	 on	 and	 off.	We	 will	 provide	 audio	 feedback	 when	 we	 set	 the	 alarm	 to
indicate	either	“the	alarm	is	on”	or	“the	alarm	is	off.”	This	also	makes	it	easy	to
ensure	the	alarm	didn’t	get	secretly	unplugged.

Checking	if	the	alarm	is	set
To	keep	things	simple,	we	can	just	reuse	the	button	that	turns	the	alarm	on	and
off.	We	don’t	really	need	a	special	button	for	this.

Snoozing	the	alarm
To	snooze,	we	will	have	a	separate	“snooze”	button,	much	like	a	normal	alarm.

Setting	the	alarm	time
To	set	 the	current	alarm,	we	can	offer	“up”	and	“down”	buttons	 to	change	 the
hour	and	minute	hands.	When	we	press	a	button,	it	announces	the	current	time.

Doing	this	on	every	single	button	press	might	be	a	bit	slow	though,	particularly
when	changing	the	minute.	Instead,	we	can	design	it	so	that	if	you	hold	down	the
“up”	 or	 “down”	 buttons,	 it	 suppresses	 the	 audio	 playback	 until	 the	 button	 is
released.

Setting	the	current	time
We	can	set	the	current	time	essentially	the	same	way	that	we	would	set	the	alarm
time.

Design	2:	Limited	Audio	Feedback
As	we	said	earlier,	 the	 issue	with	using	audio	playback	 is	 that	 it	might	disturb
others	 in	 the	 room.	We	may	want	 to	design	a	more	advanced	alarm	clock	 that
doesn’t	 rely	 on	 audio	 playback	 for	 the	 most	 common	 functions	 (particularly
those	that	might	be	done	while	the	user’s	partner	 is	asleep):	 turning	on	and	off
the	alarm	and	setting	the	alarm	time.

Turning	on	and	off	the	alarm
Instead	 of	 audio	 feedback,	we	 could	 use	 a	 physical	 switch	 (much	 like	 a	 light
switch)	to	turn	the	alarm	clock	on	and	off.	The	risk	here	is	that	the	alarm	clock
could	wind	up	unplugged	and	the	user	wouldn’t	know.

Instead,	we	 can	 still	 use	 a	 single	 button	 to	 toggle	 the	 alarm.	 Instead	 of	 audio
feedback,	 the	 clock	 will	 vibrate	 once	 to	 say	 “alarm	 is	 on”	 and	 twice	 to	 say
“alarm	is	off.”

Checking	if	the	alarm	is	set
Again,	 we	 will	 just	 reuse	 the	 button	 which	 turns	 the	 alarm	 on	 and	 off.	 The
vibration	feedback	will	tell	us	if	the	alarm	is	set.

Setting	the	alarm	time
To	 set	 the	 alarm	 time,	we	 can	have	 several	 rows	of	buttons	on	 the	 side	of	 the
alarm	clock.	Each	button	would	have	the	number	written	in	braille	as	well	as	in
colored	text	for	a	non-blind	person.	Since	we’re	using	buttons	to	set	the	time,	we
don’t	need	to	use	audio	playback.
	
Hour 12 	1	 	2	 	3	 	4	 	5	 	6	 	7	 	8	 	9	 10 11
Minute 0 1 2 3 4 5 6 7 8 9 AM

/	PM0 1 2 3 4 5 6 7 8 9

The	AM	/	PM	button	would	be	pushed	in	to	indicate	it’s	set	to	AM,	otherwise	it
would	be	set	to	PM.

This	might	 be	 far	more	 buttons	 than	we	 really	 need.	Does	 anyone	 really	 need
their	 alarm	 clock	 to	 be	 capable	 of	 setting	 their	 alarm	 for	 exactly	 9:23	 a.m.?
Probably	not.	Setting	the	alarm	to	9:25	or	9:20	would	work	just	fine.

Let’s	remove	some	of	these	buttons	to	clean	up	our	design.	Simplicity	is	a	good
thing	in	design.

We	could	potentially	 simplify	 this	 even	more,	by	 just	 listing	 :00,	 :15,	 :30,	 and
:45.

Alternatively,	we	could	replace	the	minute	buttons	with	a	circular	dial.	However,
a	dial	for	the	hours	could	be	a	bad	idea,	since	someone	might	accidentally	set	the
switch	to	the	wrong	hour.

Step	7:	Wrap	it	up
Depending	on	the	priority	we	place	on	not	disturbing	the	user’s	partner,	we	may
or	may	not	use	audio	feedback.	You	could	mention	to	your	interviewer	the	sales
benefit	of	marketing	the	alarm	clock	as	non-intrusive	to	bed	partners.

The	 first	 design	 uses	 audio	 feedback	 to	 basically	 replicate	 what	 the	 physical
display	 does.	We	 still	 have	 a	 visual	 display,	 in	 case	 non-blind	 people	 use	 the
device,	 but	we	 announce	 any	 alarm	 or	 other	 changes	 out	 loud.	 The	 only	 non-
obvious	 change	 here	 is	 suppressing	 the	 time-change	 announcement	 when	 we
hold	down	the	“up”	or	“down”	arrows.

If	we’re	concerned	about	waking	up	the	user’s	partner,	we	can	remove	the	audio

feedback	and	replace	it	with	vibration	(to	indicate	the	alarm	status)	and	physical
buttons	(to	set	the	time).

In	either	case,	we	will	keep	the	physical	display	to	ensure	the	device	is	usable	by
non-blind	people	as	well.

Type	2:	Improving	a	Product
These	questions	can	be	asked	in	general	terms	(“Pick	a	product.	How	would	you
improve	 it?”)	 or	 by	 targeting	 a	 specific	 product	 (“How	 would	 you	 improve
Product	 X?”).	 Either	 way,	 the	 secret	 to	 these	 questions	 is	 identifying	 and
understanding	the	product’s	biggest	issues.

You	may	 notice	 the	 approach	 for	 this	 type	 of	 problem	will	 be	 very	 similar	 to
“Design	 a	 product”	 questions.	 This	 is	 to	 be	 expected.	 The	 key	 difference	 is
you’re	 taking	 an	 existing	 product,	 assessing	 the	 issues,	 and	 improving	 it	 from
there.

Structure	is,	again,	very	important	here.	You	don’t	have	to	be	quite	as	explicit	in
outlining	 your	 structure,	 but	 you	 should	 tackle	 it	 in	 an	 organized	 fashion.	 A
simple	line	like	this	will	work:	“Let	me	start	first	with	understanding	the	goals	of
the	 product,	 then	move	 on	 to	 the	 issues	 and	 how	 to	 solve	 those.	Okay,	 so	 the
goals	of	the	product	are…”

Step	1:	What	is	the	goal	of	the	product?
First,	 you	need	 to	 understand	 the	 product’s	 ultimate	 goal.	What	 problems	 is	 it
solving	for	the	user?

Facebook,	 for	 example,	 allows	 you	 to	 post	 status	 updates	 and	 share	 photos.
That’s	not	the	goal	of	the	product,	though.	The	goal	is	to	connect	and	share	your
life	with	your	family	and	friends.

Note	 that	 a	 product	 might	 have	 primary	 and	 secondary	 goals.	 Facebook’s
primary	goal	for	consumers	is	connecting	with	family	and	friends,	but	business
users	have	a	different	goal:	engaging	with	existing	and	potential	customers.

Step	2:	What	problems	does	the	product	face?
Next,	you	need	to	assess	the	problems	the	product	faces.
	

Does	it	need	to	expand	its	user	base?	If	so,	should	it	broaden	its	user	base
by	entering	a	new	market,	or	should	it	expand	in	its	existing	market?
Does	it	need	to	increase	revenue?	If	so,	is	this	about	increasing	revenue	per
user	or	about	increasing	the	number	of	paying	users?

Does	it	need	to	increase	user	engagement?
Does	it	need	to	increase	conversions	from	visitors	to	registered	users?

To	assess	this,	think	about	how	the	product	is	currently	designed.	What	does	the
product	appear	to	prioritize?

Of	course,	you	can	also	ask	your	interviewer	what	the	key	problems	are,	but	you
don’t	want	to	come	off	as	being	unable	to	figure	this	out	on	your	own.	You	might
therefore	want	 to	make	 some	 educated	 guesses	 about	what	 area	 to	 focus	 your
improvements	on,	and	then	validate	this	direction	with	the	interviewer.

Step	3:	How	would	you	solve	this	problem?
Third,	brainstorm	a	few	ways	you	might	solve	this	problem	and	discuss	the	pros
and	cons	of	each.	Again,	be	open	about	the	tradeoffs	of	each	option.

Your	 ideas	 might	 be	 bold,	 crazy	 ideas,	 or	 they	 might	 be	 small,	 iterative
improvements.	 Both	 approaches	 (and	 everything	 in	 between)	 have	 immense
value	in	the	real	world.

However,	some	companies	have	more	of	a	preference	for	one	or	the	other	based
on	 their	 size,	 risk	 tolerance,	 budget,	 or	 culture.	 If	 you	 know	 which	 way	 the
company	 leans,	 you	 can	 focus	 your	 discussion	 there.	Otherwise,	 preface	what
you’re	suggesting	accordingly:

We	can	make	a	few	quick	fixes	that	will	help	mitigate	this	issue.	However,	if
we	are	willing	to	take	a	bigger	gamble,	some	additional	options	are	open	to
us.

As	far	as	the	quick	fixes,	we	can	…

Doing	this	will	allow	you	to	demonstrate	you	understand	that	while	big	changes
come	 with	 big	 rewards,	 they	 also	 come	 with	 big	 risks.	 A	 good	 PM	 needs	 to
balance	those.

Step	4:	How	would	you	implement	these	solutions?
If	 it’s	 not	 immediately	 obvious,	 discuss	with	 your	 interviewer	 how	you	would
implement	the	solution	you	proposed.	What	are	the	bigger	technical	or	business
challenges?	 How	 could	 you	 reduce	 the	 costs	 or	 risks	 associated	 with	 the
solution?	For	example,	you	might	test	out	your	solution	on	a	small	user	base	or

roll	out	a	limited	prototype.

Many	startups	in	particular	will	value	a	PM	who	is	“scrappy”	and	can	do	a	lot
with	limited	resources.	Show	this	side	of	yourself.

Step	5:	How	would	you	validate	your	solution?
A	good	PM	knows	he’s	not	always	right	and	that	his	suggestions	are	little	more
than	an	educated	guess.	Therefore,	he	will	prioritize	validating	his	solution.

Discuss	 with	 your	 interviewer	 what	 metrics	 you	 would	 gather	 to	 see	 if	 your
solution	really	worked.	For	example,	if	you	suggest	sending	“People	who	bought
X	also	bought	Y”	emails	to	users	in	order	to	increase	revenue	per	user,	you	may
want	 to	 track	metrics	 such	as	email	 clicks,	direct	 referrals	 to	product	Y,	 future
purchases	of	product	Y	from	this	set	of	users,	and	purchases	of	other	products.
You	might	 also	 want	 to	 come	 up	 with	 some	 approaches	 to	 ensure	 the	 emails
don’t	harass	users	or	make	them	unsubscribe	from	all	emails.

Type	3:	Favorite	Product
It’s	 very	 likely	 that	 at	 least	 one	 of	 your	 interviewers	 will	 ask	 you	 what	 your
favorite	product	is	and	why	(see	our	preparation	tips	below).

These	problems	are	similar	 to	“improve	a	product,”	but	approached	 in	 reverse.
Rather	than	speaking	about	what’s	broken	about	a	product,	you	discuss	why	you
love	this	product.

Generally,	people	will	speak	about	a	product	they	personally	use.	However,	you
could	 pick	 something	 you	 don’t	 use	 but	 love	 anyway.	 For	 example,	 a	 parent
could	 think	 a	 child’s	 toy	 is	 brilliantly	 done	 and	 thus	 their	 “favorite”	 product,
even	though	it’s	not	one	that	he	or	she	personally	uses.

Some	of	your	favorite	products	might	not	be	good	candidates	for	this	question;
beware	of	discussing	 them	 if	 you	 just	 can’t	 think	of	much	 that’s	 interesting	 to
say	about	them.

Similarly,	you	shouldn’t	pick	a	product	solely	because	it’s	an	interesting	one	to
discuss.	You	want	something	that	you,	personally,	connect	with.	You	want	your
passion	 for	 this	 product	 to	 come	 out.	 Don’t	 pick	 something	 because	 it’s	 the
“right”	product	if	it’s	not	the	right	one	for	you.

As	always,	you	want	to	structure	your	answer	to	these	questions.	This	question
doesn’t	 necessarily	 require	 you	 to	 explicitly	 state	 your	 structure	 (although	you
could,	if	it	sounded	natural),	but	you	should	still	keep	your	response	organized.
Strong	communication	skills	are	always	important.

Step	1:	What	problems	does	the	product	solve	for	the
user?
You,	or	at	 least	someone	close	 to	you,	are	probably	the	user	here.	You	need	to
think	about	not	just	what	the	product	is,	but	also	what	the	user’s	goals	are.

For	example,	take	a	product	that	analyzes	your	personal	finances,	like	Mint.com.
That’s	what	the	product	does,	but	it’s	not	a	goal.	The	goal	is	likely	to	help	you
save	money	by	 understanding	how	you’re	 spending	 it.	Did	 you	 really	want	 to
spend	$1,000	on	food	last	month?

You	 can	 discuss	more	 than	 one	 goal,	 but	 don’t	 go	 overboard.	 If	 you’re	 listing
more	 than	 one	 or	 two	 goals,	 your	 discussion	 will	 lose	 focus—and	 you	might
actually	be	discussing	features,	not	goals.

Step	2:	How	does	the	product	accomplish	these	goals?
What	makes	it	“neat”?	What	makes	users	fall	in	love
with	the	product?
Now	 you	 should	 discuss	 how	 exactly	 the	 product	 accomplishes	 these	 goals.
There	is	something	about	 the	product	 that	makes	it	uniquely	powerful	at	doing
this.

For	example,	it	might	have	a	wealth	of	user	data	that	allows	it	to	perform	more
powerful	 analytics.	 Or	 maybe	 it	 just	 has	 an	 excellent	 interface,	 where	 every
button	seems	to	be	in	just	the	right	place.

In	 addition	 to	 being	 great	 at	 accomplishing	 these	 goals,	 there	 might	 be	 other
things	about	the	business	that	you	think	are	particularly	impressive.	They	might
have	a	clever	revenue	model	that’s	a	win-win	for	users,	or	they	might	have	a	way
of	 reducing	 their	 costs	 substantially	 by	 relying	 on	 crowdsourcing.	 It’s	 okay	 to
talk	about	these	details	as	well.

For	many	products,	there	is	also	an	emotional	connection	to	the	product.	Some
products	 are	 truly	 loved	 by	 consumers;	 they	 are	 the	 things	 people	 rave	 about.
Why?

Step	3:	How	does	it	compare	to	the	alternatives?
Every	product	has	its	alternatives,	even	ones	that	are	seemingly	first	to	market.
Think	 both	 narrowly	 and	 broadly	 about	 what	 the	 “competition”	 is	 for	 this
product.	The	direct	competition	might	be	other	websites	that	do	the	exact	same
thing,	and	the	indirect	competition	might	be	physical	products	that	achieve	your
goal.

In	other	words,	there	is	a	reason	why	you’re	not	using	the	alternatives.	What	is
that	reason?

Step	4:	How	would	you	improve	it?
You	don’t	necessarily	have	to	go	into	this	immediately,	but	it’s	a	natural	follow-

up	question	the	interviewer	might	ask.	You	should	approach	this	the	same	way
you	would	with	the	prior	type	of	question.

Example:	What’s	your	favorite	website?
Here’s	one	answer	I	personally	might	give:

“I’m	 a	 big	 fan	 of	 Quora,	 which	 is	 a	 question-and-answer	 website	 where
users	can	pose	questions	and	have	them	answered—often	by	experts	in	the
subject.	For	example,	someone	might	ask,	‘What’s	the	best	way	to	replace	a
flat	tire?’	or	‘Should	start-ups	wait	to	raise	venture	capital?’,	or	even	‘What
is	it	like	to	live	on	a	farm?’	It’s	everything	from	solve-my-problem	questions
to	what’s-your-opinion-on	questions	to	tell-me-your-experience	questions.

What	I	love	about	Quora	is	how	effective	it	is	for	solving	specific	problems.
There	 are	 experts	 in	 virtually	 every	 industry	 offering	 their	 expertise	 and
giving	extremely	thorough,	well-thought-out	answers.

It’s	helped	me	on	a	bunch	of	occasions.	For	example,	when	I	was	working
on	a	translated	version	of	some	content,	I	needed	to	know	how	a	Japanese
translation	would	compare	in	number	of	pages	to	an	English	version.	I	got
several	 great	 answers,	 approaching	 it	 in	 different	ways.	 These	 people	 all
really	knew	what	they	were	talking	about.

On	another	occasion,	I	just	wanted	to	know	where	the	best	coffee	shop	that
would	be	good	for	studying	near	my	home	was.	A	lot	of	local	people	on	the
site	and	I	found	my	now-favorite	cafe	this	way.

But	even	beyond	solving	 specific	problems,	 I	 find	 I	 just	 love	being	on	 the
site.	It’s	essentially	a	community	built	on	learning	and	exploring.	You	get	to
know	 the	 people	 on	 the	 site	 and	 value	 their	 responses,	 because	 you	 can
trust	 them.	 I’ve	 never	 been	 the	 type	of	 person	 to	make	“friends”	 through
Quora.	And	yet,	on	Quora,	I	really	do	feel	like	I	know	the	people.	It’s	a	real
community.

I	 think	 it’s	one	of	 very	 few	 sites	which	have	been	able	 to	bridge	 that	gap
between	learning	and	fun.	It’s	engaging.	Because	it’s	question-and-answer
style,	I	find	myself	stumbling	across	a	topic	I’d	never	been	interested	in	but
wondering,	“Yes,	why	is	that?”

In	 many	 ways,	 it’s	 replaced	 Google	 for	 me	 as	 a	 place	 to	 get	 questions

answered.	 If	 you	 think	 about	 it,	 searching	 online	 to	 solve	 questions	 has
several	issues:

	

First,	 you	 search	 by	 keywords,	 even	 when	 you’re	 trying	 to	 answer	 a
question.	 Your	 hope	 is	 you’ll	 find	 a	 page	 that	 offers	 a	 broad	 enough
overview	that	you	can	answer	your	question.	It’s	not	truly	solution-oriented,
so	it’s	often	inefficient.
Second,	 trust.	 You	might	 not	 trust	 the	 webpage	 author’s	 credentials.	 And
even	 if	 you	 do,	 authors	 are	 wrong	 even	 about	 their	 areas	 of	 expertise.
Quora	allows	users	to	give	feedback	on	answers	via	comments	(as	well	as
through	 upvoting	 /	 downvoting),	 which	 is	 a	 great	 way	 to	 validate	 an
answer’s	 accuracy.	 Google’s	 version	 of	 reputation	 is	 through	 PageRank,
which	is	pretty	imperfect.
Third,	a	lot	of	information	is	just	hard	to	access	through	normal	webpages
and	 blogs.	 Websites	 have	 an	 inherent	 bias	 towards	 authors	 with	 the
capability	 and	 desire	 to	 create	 a	 webpage.	 It’s	 easy	 to	 find	 technical
support,	but	what	about	tips	on	how	to	act	out	a	specific	part	from	a	play?
Not	as	easy.

Of	course,	I	still	search	for	answers	online,	but	I	 find	myself	using	Quora
more	 and	more	 both	 to	 solve	my	problems	and	as	 a	 place	 to	 browse	 and
learn	new	things.”

I’ve	critiqued	Quora	here,	but	I’ve	also	done	a	few	more	things.
	

I’ve	implicitly	demonstrated	a	love	for	learning.
I’ve	 discussed	 why	 Quora	 grabs	 me:	 it’s	 question-based	 and	 it’s	 a
community.	This	speaks	to	the	emotional	attachment	some	people	have	to	a
product.
I’ve	discussed	some	less	obvious	flaws	of	online	searching.

This	 isn’t	 necessarily	 the	 answer	 for	 you,	 of	 course.	Think	 about	 a	website	 or
product	that	speaks	to	you.

Preparation
Practice	makes	perfect—and	you	should	practice	these	questions	alone	or	with	a
friend.	Additionally,	it’s	important	to	come	in	with	ready-to-go	answers	for	these
questions.

Step	1:	Select	Products
Walking	into	your	 interview,	you	should	be	prepared	to	 talk	 in	depth	about	 the
following:
	

One	online	product.
One	 physical	 “offline”	 product.	 Interviewers	 love	 to	 try	 to	 “stump”
candidates	by	asking	them	to	assess	a	physical	product.
One	product	you	purchased	recently.
Your	“favorite”	product	or	website.
A	product	you	think	is	well	designed.
The	company	or	team’s	product.

Oftentimes,	 a	 company	 will	 ask	 a	 candidate	 “What’s	 the	 last	 product	 you
purchased?”	 It	 doesn’t	 truly	 need	 to	 be	 the	 very	 last	 product,	 but	 it	 should	 be
something	fairly	recent.

Some	of	these	products	could	be	the	same.	For	example,	the	online	product	you
selected	 could	 be	 your	 favorite	 product.	 However,	 being	 prepared	 to	 discuss
more	products	may	prove	valuable.

Step	2:	Understand	Key	Metrics
For	each	product,	 think	about	and	understand	 the	product’s	key	metrics.	These
will	likely	include	the	following:
	

Users	 /	 Traffic:	 How	many	 users	 does	 the	 product	 have?	 How	 are	 they
acquiring	users?
Conversion:	How	effectively	does	the	product	convert	a	visitor	to	a	user,	a
free	user	to	a	paid	user,	or	a	paid	user	to	a	more	highly	paying	user?
Referral	 Rates:	 Do	 users	 refer	 other	 users?	 How	 often?	 Is	 the	 product
viral?

Engagement:	 Are	 users	 actively	 engaging	 with	 the	 product	 (posting,
comment,	playing,	etc.)?	How	often?
Retention:	How	often	 do	users	 come	back?	How	many	users	 come	back
after	a	certain	amount	of	time?	For	some	products,	visiting	once	a	month	is
good.	For	others,	you’ll	want	a	user	to	frequently	visit.
Revenue:	How	does	 the	product	make	money?	How	much	money	does	 it
make?
Costs:	 Where	 does	 the	 product	 face	 costs?	 Does	 it	 require	 physical
materials?	What	 are	 its	 development	 costs?	 Does	 it	 face	 high	 support	 or
sales	costs?

It’s	 important	 to	 think	 through	 which	 of	 these	 are	 most	 crucial,	 which	 the
product	excels	in,	and	which	it	struggles	in.	What	would	you	do	to	change	these
metrics?

See	Also:	Product	Metrics

Step	3:	Analyze	Each	Product
Now	that	you	understand	what	the	metrics	are	for	each	product	(as	well	as	you
can),	analyze	the	product	on	the	following	aspects:
	

Users	 and	 Goals:	 What	 are	 the	 primary	 types	 of	 users?	What	 are	 their
goals?	How	does	the	product	help	users	accomplish	these	goals?
Strengths:	For	which	metrics	does	the	product	excel?	Does	it	have	a	lot	of
users?	Does	it	have	high	engagement	per	user?
Challenges	/	Focuses:	What	is	the	main	challenge	the	product	faces?	Is	it
struggling	 to	get	users	 to	 sign	up?	 Is	 it	 struggling	 to	convert	 free	users	 to
paid	users?
Why,	Why,	Why:	Why	does	the	product	excel	(or	struggle)	in	a	particular
way?
Priorities	 and	 Values:	 What	 does	 the	 product	 or	 company	 care	 about?
Apple,	 for	 instance,	 is	 obsessed	 with	 the	 user	 experience.	 An	 enterprise-
software	 company,	 however,	might	 prioritize	 security	 and	 reliability	 over
aesthetics.
Competitors:	What	are	 the	product’s	competitors?	How	does	 the	product
measure	up	to	them?	Think	both	narrowly	and	broadly	about	competitors.	A
stereo	competes	not	only	with	other	stereos,	but	also	with	people’s	mobile
phones.

Tradeoffs:	What	 are	 the	 tradeoffs	 a	 product	 has	 had	 to	make	 in	 order	 to
accomplish	its	goals	or	address	user	needs?	How	did	it	come	to	be	that	the
product	had	these	strengths	or	challenges?

In	essence,	you	want	to	dissect	the	product	from	a	business	perspective,	as	well
as	 from	 a	 user	 perspective.	 Keep	 asking	 yourself	why	 and	how.	 Why	 did	 the
product	do	something	in	a	particular	way,	and	how	could	it	be	better?

While	 you	 should	 assume	 the	 company	 probably	 had	 good	 reasons	 for	 its
decisions,	 you	 shouldn’t	 automatically	 assume	 that	 they	 did	 everything	 right.
Virtually	every	product	can	be	improved.

Tips	and	Tricks
Ultimately,	 these	 design	 questions	 are	 getting	 at	 how	well	 you	 can	 show	 user
empathy.	Can	you	get	 inside	 the	user’s	head	and	 think	about	what	 that	 type	of
user	would	want?	Or	will	you	just	design	the	product	you	will	want?	Focusing
on	the	user	is	key.

In	addition	though,	the	following	tips	and	tricks	will	help	you:
	

Have	an	Opinion:	Develop	a	point	of	view	and	act	like	you’re	the	owner
of	the	product.	Interviewers	want	PMs	who	have	opinions.
“Wow”	 the	 Interviewer:	 Try	 to	 come	 up	with	 at	 least	 one	 “wow”	 idea.
When	you	find	it,	point	it	out.	Did	you	think	of	a	major	market	the	product
could	enter	easily?	Did	you	come	up	with	a	killer	feature	that	would	make
people	use	 the	product	 twice	 as	much?	Don’t	 let	 it	 get	hidden	among	 the
quick	fixes.
Use	the	whiteboard:	Don’t	feel	you	need	to	stay	glued	to	your	seat	during
such	a	question.	 In	fact,	 it’s	great	 to	get	up	and	use	 the	whiteboard;	 that’s
what	it’s	 there	for.	Using	the	whiteboard	may	help	you	communicate	your
design	more	clearly	to	your	interviewer.
Don’t	overbuild:	Some	people	go	overboard	with	wacky	designs	to	solve	a
simple	 problem.	 You’ll	 want	 to	 be	 realistic	 about	 what	 can	 and	 can’t	 be
built,	and	what	the	tradeoffs	are.
Don’t	 complain	 that	 you	need	more	 research:	Yes,	 yes,	we	understand
that,	in	an	ideal	world,	you’d	love	to	study	a	variety	of	things	and	gather	a
bunch	 of	 data.	 You	 can’t	 do	 that	 in	 the	 interview	 though—or	 in	 the	 real
world.	You’ll	have	to	make	do	with	what	you	can.	It’s	fine	to	briefly	discuss
what	 research	 you	would	 like	 to	 gather	 to	 better	 inform	your	 decision.	 If
your	 interviewer	 seems	 interested	 in	 this	 discussion,	 then	 go	 for	 it.
Otherwise,	 don’t	 dwell	 on	 it.	 Use	 your	 best	 judgement	 to	 inform	 your
decision,	just	as	you	would	in	the	real	world.
Think	 about	 the	 business,	 too:	 The	 customer’s	 goals	 are	 incredibly
important,	 but	 so	 are	 the	goals	 of	 the	business.	 If	 you’re	 critiquing	 a	 real
product,	 think	about	 the	business	goals.	For	example,	 if	you’re	discussing
what	you	would	 improve	about	a	social	media	product,	consider	what	 the
business’	 primary	 concerns	 are.	 Is	 it	 increasing	 revenue?	 User	 sign	 ups?
User	 engagement?	 These	 goals	may	 guide	 how	 you	want	 to	 improve	 the

product.
Be	open	about	the	tradeoffs:	Some	candidates	try	to	pass	off	their	product
as	 the	 best	 idea,	 as	 though	 their	 interviewer	won’t	 catch	 potential	 issues.
Not	so.	Your	interviewer	will	know	the	issues	your	idea	has.	If	she	doesn’t,
then	 you’ll	 actually	 impress	 her	 by	 pointing	 out	 issues	 that	 she	 wasn’t
aware	of.

When	in	doubt,	act	like	you	would	imagine	a	good	PM	to	act.	A	good	PM	will
be	realistic	about	the	limitations.	A	good	PM	would	gather	research,	but	would
also	 be	 able	 to	 move	 forward	 without	 it.	 A	 good	 PM	 will	 think	 about	 the
business	 aspects.	A	 good	PM	will	 be	 open	 about	 the	 potential	 issues	with	 her
designs.

Act	like	a	good	PM.

Sample	Questions
	

1.	How	would	you	design	a	bookcase	for	children?
2.	How	 would	 you	 design	 an	 oven	 for	 people	 in	 a
wheelchair?

3.	Google	Maps	is	launching	a	version	for	schools.	How
would	you	design	this?

4.	What	is	your	favorite	business	tool?	Why?
5.	How	would	you	design	a	neighborhood	park?
6.	What	would	you	change	about	a	supermarket	to	make
it	better	for	college	students?

7.	What’s	 your	 favorite	 picture	 storage	 website?	 What
would	you	change	about	it?

8.	Design	a	portal	or	interactive	landing	page	to	replace
Google.com.

9.	How	would	 you	 design	 a	 social	 /	 career	 networking
website	for	entrepreneurs?

10.	 Pick	a	target	user	who	you	don’t	feel	is	well	served	by
Amazon.com.	How	would	you	redesign	Amazon.com
to	appeal	to	that	user	type?

Case	Questions	
Chapter	15

It’s	 often	 been	 said	 product	 managers	 are	 the	 “CEO	 of	 the	 product,”	 but,
unfortunately,	the	popular	wisdom	here	is	somewhat	inaccurate.	You	are	not	the
CEO.	 You	 will	 not	 do	 acquisitions	 or	 mergers.	 You	 will	 not	 deal	 with
shareholders.	You	will	often	not	even	deal	with	finances.

However,	you	are	responsible	for	delivering	the	best	product	to	customers.	Note
this	 sentence	 covers	 three	 very	 important	 terms:	 “delivering,”	 “product,”	 and
“customers.”	Most	PM	questions	revolve	around	these	three	terms.

The	Case	Question:	Consultants	vs.	PMs
If	you	have	prepped	for	management	consultant	interviews,	you	should	be	aware
that	 consulting	 case	questions	 are	 just	 similar	 enough	 to	PM	case	questions	 to
potentially	lead	you	astray.

Management	 consultants	 at	 firms	 such	 as	 McKinsey,	 Bain,	 and	 BCG	 have	 a
different	set	of	responsibilities	 than	a	PM.	Consultants	generally	 look	at	a	firm
broadly,	 spend	 weeks	 or	 months	 gathering	 data,	 and	 then	 tackle	 big-picture
problems	 such	 as,	 “Should	 our	 client	 acquire	 ________?”	They	 look	 at	 things
like	compatible	company	cultures,	dependence	on	suppliers,	and	tax	structures.
They	are	expected	to	be	data	driven	and	methodical:	ask	questions,	gather	data,
diagnose	the	issue,	and	propose	a	solution	(which	the	consultants	are	rarely	there
to	implement).

Product	managers	focus	on	the	product	and	its	customers.	They	make	decisions
about	 feature	sets	and	market	entry,	and	 then	follow	through	on	 implementing,
delivering,	and	maintaining	the	product.

Even	 when	 interview	 questions	 overlap	 (“Should	 Google	 launch	 a	 TV
service?”),	appropriate	interview	behavior	differs.	Consultants	will	ask	for	(and
be	given)	data	 to	solve	a	problem	while	PMs	will	be	expected	to	rely	more	on
their	instincts	about	an	issue.	For	example,	a	PM	interviewer	is	unlikely	to	whip
out	PowerPoint	slides	upon	request.	This	is	not	to	say	that	PMs	should	never	be
data	 driven	 or	 that	 consultants	 shouldn’t	 use	 their	 instincts,	 but	 the	 focus	 is
typically	flipped.

Consultants:	you	have	been	warned.

What	Interviewers	Look	For
One	 PM	 candidate	 I	 prepped	 explained	 that,	 in	 a	 recent	 interview	with	 a	 top
startup,	he	was	asked	what	he	would	do	if	he	were	CEO	of	the	company.	“How
can	 she	 even	 ask	me	 that?”	Michael	 complained.	 “I	 told	 her	 it	 was	 an	 unfair
question	since	I	obviously	don’t	have	as	much	knowledge	as	she	does	about	the
company.”	Suffice	to	say,	that	didn’t	go	over	so	well.

For	all	the	Michaels	out	there:	Of	course	you	don’t	have	the	knowledge	to	truly
solve	the	problem.	Of	course	you	could	solve	it	better	if	you	did.	But	that’s	not
the	point;	in	fact,	it’s	not	even	an	issue.

An	 interviewer	 is	 not	 evaluating	 you	 on	 the	 correctness	 of	 your	 eventual
conclusions	but	 rather	on	 the	process	you	 take	 to	get	 there.	For	 that	 goal,	 you
don’t	need	all	 the	data	and	background	information	that	you	would	have	in	the
real	world.

Interviewers	are	looking	for	candidates	who	will	do	the	following:
	

Structure	 a	 problem:	 Even	 seemingly	 open-ended	 questions	 can,	 and
should	be,	broken	down	 into	components.	Your	market	 can	be	 segmented
and	 your	 strategy	 can	 be	 divided.	 Find	 a	 way	 to	 tackle	 a	 problem	 in	 a
structured	way.
Show	strong	instincts:	We	rarely	have	all	the	data	we’d	like,	and	we	don’t
know	what	 the	future	will	hold.	A	good	PM	should	be	able	 to	make	good
business	decisions,	even	in	the	absence	of	exhaustive	data.
Drive,	Not	Ride:	You	might	not	be	the	CEO	of	the	product,	but	you	are	a
leader.	Show	this	by	driving	the	interview	forward.	Be	relatively	exhaustive
in	 your	 response	 to	 a	 question	 –	 discuss	 the	 benefits	 and	 tradeoffs,	 the
short-term	 and	 long-term	 benefits,	 etc.	 –	 and	 back	 up	 your	 answers	with
reasons.	Don’t	go	overboard,	though.	If	you	find	your	interviewer	is	asking
many	 follow-up	 questions	 and	 you’re	 only	 giving	 short	 responses	 each
time,	 you	 might	 be	 riding	 and	 not	 driving.	 On	 the	 other	 hand,	 if	 you’re
concerned	you’re	going	 into	 too	much	detail,	ask	your	 interviewer	 if	he’d
like	you	to	expand.

You	can	and	should	ask	questions,	but	there’s	a	limit.	If	your	interviewer	flips	a
question	back	to	you	(e.g.,	“Well,	what	do	you	think?”),	that’s	a	tipoff	that	you

went	too	far	with	your	questions.	No	big	deal.	Just	get	back	in	the	driver’s	seat:
think	 about	 the	 problem,	 make	 the	 best	 decision	 you	 can,	 and	 explain	 your
reasoning.

Useful	Frameworks
An	 MBA	 is	 not	 required	 for	 most	 product	 management	 jobs,	 and	 thus	 most
business	 frameworks	 are	 not	 necessary	 to	 tackle	 problems.	After	 all,	many	 of
your	interviewers	wouldn’t	know	the	frameworks	either.

However,	 understanding	 them	 can	 be	 useful	 anyway.	 The	 frameworks	 can
suggest	 a	 structure	 for	 a	problem	or	point	you	 to	an	area	you	might	otherwise
have	missed.	Just	don’t	 try	 to	whip	out	 the	frameworks	and	force	fit	 them	to	a
problem.	Structure	matters,	but	regurgitating	frameworks	does	not.

Don’t	 worry	 about	 memorizing	 these	 frameworks;	 you	 won’t	 be	 expected	 to
know	them.	Just	read	them	over	to	get	a	sense	for	the	types	of	structure	that	can
be	used	 to	answer	a	question.	A	framework	 is	 just	a	structure	 for	 taking	a	big,
complicated	problem	and	breaking	 it	 down	 into	 smaller	pieces.	Whenever	you
hear	a	Case	Question,	you	should	 think	about	how	you	can	break	 it	down	into
smaller	questions.	These	frameworks	give	examples	of	ways	to	do	that.

Customer	Purchase	Decision	Making	Process
There	are	many	frameworks	 to	model	 the	decision-making	process,	but	 two	of
the	most	common	are	AIDA	and	REAN.

AIDA	 models	 customer	 decisions	 as	 Attention	 (or	 Awareness)	 ->	 Interest	 ->
Desire	->	Action.
	

Attention:	 You	 need	 to	 get	 the	 customer’s	 attention	 somehow.	A	 snappy
email	heading,	perhaps?	A	snazzy	ad?	Or	maybe	a	mention	from	a	trusted
friend	or	website?
Interest:	Now	that	you	have	the	customer’s	attention,	you	need	to	get	them
interested	 in	 your	 offering.	What	 are	 the	 advantages	 or	 benefits	 of	 your
product?
Desire:	 With	 the	 customer’s	 interest	 piqued,	 you	 need	 to	 convince	 the
customer	that	they	want	your	product.
Action:	Finally,	with	 the	customer	desiring	your	product,	 they	 take	action
to	purchase	the	product.

REAN	expands	this	to	add	on	post-purchase	behavior.

	

Reach:	The	customer	is	aware	of	your	product.
Engage:	The	customer	is	engaged	and	considering	your	product.
Activate:	The	customer	takes	action	to	purchase	the	product.
Nurture:	 The	 customer	 has	 purchased	 the	 product,	 and	 it’s	 now	 your
responsibility	to	nurture	this	relationship.

Don’t	worry	about	which	framework	to	use.	Again,	the	specific	framework	isn’t
relevant.	 The	 point	 is	 to	 understand	 purchase	 behavior	 as	 a	 cycle	wherein	 the
customer	 must	 first	 be	 aware	 of	 your	 product,	 then	 they	 have	 to	 evaluate	 it
against	their	needs	and	competitors’	offerings,	and	then	they	finally	purchase	it.
After	 the	 purchase	 decision,	 the	 customer	 relationship	 continues	 and	 your
company	should	likely	work	to	foster	a	strong	relationship.

This	 framework	 might	 be	 useful	 in	 discussing	 how	 you	 would	 market	 a	 new
product.	You	might	 discuss	 that	 getting	 the	 customer’s	 attention	will	 be	 fairly
easy,	 but	 the	 “action”	 part	 (getting	 the	 user	 to	 actually	 switch	 from	 your
competitor	to	you)	will	be	more	difficult.

Marketing	Mix	(4	Ps)
The	“Marketing	Mix”	(also	called	the	4	Ps)	is	a	way	to	understand	the	different
aspects	of	a	product’s	approach	to	marketing.
	

Product:	This	is,	of	course,	the	actual	item	being	offered.	It	should	cater	to
a	customer’s	wants	or	needs.
Price:	 The	 price	 will	 determine	 how	 many	 and	 what	 type	 of	 customers
purchase	the	product.	Pricing	can	be	more	complex	for	online	products	and
services	as	compared	to	physical	products.	For	example,	an	online	storage
service	could	have	a	one-month	 free	 trial,	 followed	by	discounted	pricing
for	 non-profits,	 with	 additional	 “a	 la	 carte”	 purchases	 for	 an	 automatic
backup	utility.
Promotion:	Promotion	encompasses	all	forms	of	advertising,	PR,	word	of
mouth,	 and	 sales	 staff.	 For	 example,	 promotion	 for	 a	 kids’	 product	 could
include	freebies	given	out	to	influential	bloggers.
Place:	A	physical	product’s	distribution	 (“place”)	can	 include	 things	 such
as	 online	 sales	 through	 Amazon,	 opening	 their	 own	 stores	 like	 Apple,
distribution	 in	 retail	 stores,	 and	 sales	 through	 their	 own	website.	 Greater

distribution	is	not	always	better;	many	companies	prefer	to	control	the	sales
experience	 by	 limiting	 the	 sales	 channels.	 For	 online	 products,	 “place”
might	just	be	a	single	website,	or	it	might	include	bundling	the	product	with
another	company’s	offerings.

For	online	products,	promotion	can	become	very	complex.	A	lot	of	products	are
competing	 for	 the	 customer’s	 attention,	 and	 advertising	 is	 often	 insufficient	 to
drive	sales.

This	framework	could	be	useful	to	discuss	the	different	elements	of	a	marketing
plan	for	a	new	or	existing	product.

SWOT	Analysis
SWOT	analysis	is	a	structure	to	analyze	companies	and	products.
	

Strengths:	Strengths	are	the	internal	factors	that	benefit	a	product.	This	can
include	 anything	 about	 the	 costs,	 product	 features,	 company	 culture,
reputation,	 infrastructure,	 or	 other	 aspects.	 For	 example,	 in	 considering
launching	the	Kindle,	one	of	Amazon’s	strengths	would	be	that	it	is	already
the	place	where	customers	buy	books	online.
Weaknesses:	Weaknesses	are	internal	factors	that	introduce	challenges	for
a	 product.	 For	 example,	 if	 a	 web	 company	 were	 to	 consider	 creating	 a
physical	device,	a	weakness	might	be	that	 it	doesn’t	have	experience	with
distribution.
Opportunities:	Opportunities	have	an	external	 focus	and	 relate	 to	 factors
such	 as	 market	 growth,	 technology	 changes,	 competition,	 and	 legal
regulations.	 For	 example,	 the	 growing	 cost	 of	 healthcare	 creates	 an
opportunity	for	a	product	that	gives	better	insight	into	one’s	health.
Threats:	Threats	are	the	external	challenges	a	product	faces.	For	example,
the	 unpredictability	 in	 energy	 usage	 regulation	 poses	 a	 threat	 for	 many
clean	energy	products.

The	following	matrix	represents	the	SWOT	structure:
	

GOOD BAD
INTERNAL strengths weaknesses
EXTERNAL opportunities threats

This	framework	can	help	decide	not	only	whether	a	company	should	pursue	an
opportunity	but	also	what	strategies	would	further	that	pursuit.

The	Five	Cs	(Situational	Analysis)
The	Five	Cs	provide	an	overview	of	the	environment	for	a	product	or	decision.
	

Company:	 This	 encompasses	 all	 aspects	 of	 a	 company,	 including	 its
products,	 culture,	 strategy,	 brand	 reputation,	 strengths,	 weaknesses,	 and
infrastructure.
Competitors:	 Competitors	 include	 direct	 competitors,	 potential
competitors,	and	substitute	products.	For	each	of	these,	a	discussion	could
encompass	 market	 share,	 tradeoffs,	 positioning,	 mission,	 and	 potential
future	decisions.
Customers:	 This	 includes	 aspects	 such	 as	 demographics,	 purchase
behavior,	market	size,	distribution	channels,	and	customer	needs	and	wants.
Collaborators:	 Collaborators	 include	 suppliers,	 distributors,	 and
partnerships.	 A	 discussion	 here	 might	 include	 what	 makes	 particular
collaborators	valuable	and	how	they	enable	success.
Climate:	Climate	includes	aspects	such	as	regulations,	technology	changes,
economic	 environment,	 and	 cultural	 trends.	 A	 hostile	 climate	 can	 kill	 a
business	decision,	while	a	positive	one	can	greatly	facilitate	success.

This	 framework	can	guide	discussions	on	whether	 a	 company	 should	 launch	a
product	and	what	the	company’s	strategy	should	be.

Porter’s	5	Forces
Porter’s	5	Forces	is	a	framework	for	industry	analysis.	This	industry	analysis	can
be	useful	for	understanding	a	company’s	decision.
	

Rivalry	Among	Existing	Competitors:	More	competitors	generally	leads
to	 more	 heated	 competition,	 as	 does	 more	 direct	 competition.	 If	 many
companies	make	the	same	product	and	they	are	not	strongly	differentiated,
this	 will	 generally	 drive	 down	 prices	 for	 everyone.	 Many	 things	 can
influence	 rivalry,	 such	 as	 market	 growth	 (growing	 markets	 enable
competitors	 to	 expand	without	 fighting	with	 each	 other	 for	market	 share)
and	high	costs	to	exit	the	market	(companies	are	reluctant	to	leave).

Buyer	 Power:	 If	 a	 company	 or	 industry	 has	 relatively	 few	 buyers	 (for
example,	only	the	government	and	big	banks),	or	some	buyers	have	a	very
disproportionate	 share	 of	 revenue,	 these	 buyers	 will	 wield	 considerable
power.	 This	 power	 allows	 them	 to	 affect	 prices,	 feature	 sets,	 delivery
timelines,	and	other	aspects.
Supplier	Power:	Like	buyers,	suppliers	gain	 influence	over	a	company	 if
the	 company	 is	 heavily	 dependent	 on	 them.	This	 commonly	 happens	 if	 a
company	 has	 a	 component	 that	 it	 exclusively	 (or	 almost	 exclusively)
purchases	from	a	single	source.
Threat	of	Substitutes:	Competition	exists	not	just	from	direct	competitors,
but	 also	 from	substitute	products.	For	 example,	 even	 if	Amazon	were	 the
only	 seller	 of	 electronic	 books	 (and	 therefore	 there	 was	 no	 direct
competition),	 the	 prices	 of	 e-books	 would	 still	 be	 influenced	 by
“competition”	from	physical	books.
Threat	 of	 New	 Entrants:	 With	 few	 barriers	 to	 entry	 in	 an	 industry,
companies	 are	 constantly	 vulnerable	 to	 competition.	 If	 they	 price	 their
goods	too	high,	another	company	will	enter	the	market	and	capture	market
share.	Barriers	 to	entry	can	 include	 things	such	as	proprietary	 technology,
massive	economies	of	scale,	strong	brands,	or	anything	that’s	very	difficult
to	do.

Consider,	for	example,	the	PC	market.	Buyers	have	considerable	power,	as	many
sales	 come	 from	 just	 a	 few	 retailers.	 Suppliers	 also	 have	 considerable	 power
since	there	are	limited	manufacturers	of	certain	components	and	high	switching
costs	 in	 changing	 manufacturers.	 On	 the	 positive	 side,	 there	 is	 some
differentiation	 between	 competitors	 and	 limited	 substitutes.	 The	 market	 has
moderate	barriers	to	entry	(branding,	etc.).	There	are	worse	markets	to	be	in,	but
there	are	also	many	better	markets.

This	framework	could	be	useful	in	discussing	whether	or	not	a	company	should
enter	 a	 specific	market.	What’s	 the	 industry	 like?	 If	 it’s	hyper-competitive,	we
might	choose	to	avoid	it.

Make	Your	Own	Framework
If	you	think	a	lot	of	these	frameworks	sound	sort	of	the	same,	you’re	not	alone.
They	do	overlap.	Here’s	a	way	to	see	the	differences:
	

Customer	 Purchase	 Decision	 Making	 Process	 helps	 us	 understand	 the

buying	process	and	gives	us	an	“entry	point”	for	boosting	sales.
Marketing	 Mix	 (4	 Ps)	 describes	 the	 different	 aspects	 of	 a	 company’s
marketing	plan.
SWOT	Analysis	offers	a	framework	for	analyzing	a	strategic	decision.
Five	 Cs	 (Situational	 Analysis)	 gives	 an	 overview	 of	 the	 environment
around	a	product	or	company.
Porter’s	5	Forces	describes	what	an	industry	as	a	whole	looks	like.

Use	these	frameworks	as	a	starting	point	to	analyze	a	problem	and	to	signal	key
aspects	 you	might	 otherwise	miss,	 such	 as	 the	 value	 of	 nurturing	 an	 ongoing
customer	relationship.

In	 an	 actual	 interview,	 you	 should	 use	 the	 best	 “framework,”	 or	 structure,	 to
solve	the	problem.	If	that’s	one	of	these	frameworks,	great!	But	more	often	than
not,	you’ll	need	to	create	your	own.	You	might	slightly	tweak	one	of	these,	you
might	blend	two	or	three	together,	or	you	might	come	up	with	something	totally
fresh.

Product	Metrics
Discussions	 about	 product	 and	 company	metrics	 can	 come	 up	 in	many	ways.
They	could	be	introduced	in	a	question	about	diagnosing	a	hypothetical	issue,	or
they	could	be	used	to	explain	why	a	particular	decision	was	made.

In	your	discussions,	be	sure	to	consider	which	metrics	are	most	important	for	a
product.	Any	product	will	excel	in	some	metrics	and	struggle	at	others.

Types	of	Metrics
Depending	on	your	goals,	you	can	break	down	the	types	of	metrics	in	a	variety
of	 ways.	 We’ve	 divided	 them	 into	 user	 acquisition,	 activity,	 conversion	 &
retention,	and	money.

Alternatively,	 you	 can	 divide	 them	 based	 on	 the	 customer	 lifecycle,	 as	 Dave
McClure	 does	 in	 his	 “Startup	 Metrics	 for	 Pirates”	 presentation1:	 Acquisition,
Activation,	Retention,	Referral,	and	Revenue.

User	Acquisition
	

How	many	users	do	we	have?
How	(and	why)	has	the	user	base	grown	overtime?
How	many	active	users	are	there?	How	do	we	define	what	an	active	user	is?
Where	are	users	coming	from?	Are	they	referring	their	friends?
Which	channels	are	the	most	effective	in	getting	users?

Activity
	

How	many	users	are	using	feature	X?
What	percent	have	completed	a	particular	workflow?
What	 are	 people	 saying	 about	 the	 product?	 Do	 they	 love	 it?	 Can	 you
measure	that?

Conversion	&	Retention
	

What	is	the	conversion	rate	(free	to	paid,	visiting	to	signing	up,	etc.)?
What	is	the	churn	rate?

Money
	

What	is	the	customer	acquisition	cost?
How	much	does	supporting	a	customer	cost?
How	much	money	does	each	user	bring	in	(average	revenue	per	user)?
What	is	the	lifetime	value	of	a	customer?
What	is	our	revenue	growth	rate?

Measuring
Generally	speaking,	you	should	measure	 the	change	 in	a	metric	rather	 than	 the
total	volume.	Measurements	since	beginning	of	time	are	neat,	but	not	actionable.
They’re	 the	 sorts	 of	 things	 a	 company	 might	 show	 off	 to	 investors	 or	 to	 the
press.	They	won’t	help	the	company	make	a	decision.

Many	 of	 these	 metrics	 can	 and	 should	 be	 broken	 down	 by	 “cohorts.”	 These
cohorts	could	be	based	on	gender,	location,	date	registered,	or	a	variety	of	other
factors.

To	actually	gather	data,	you	have	many	options:
	

Usability	Testing:	 This	 generally	won’t	 give	 you	 true	metrics,	 but	 it	 can
help	 you	 understand	 the	 why.	Why	 are	 customers	 leaving	 your	 site	 at	 a
certain	point?
Customer	 Feedback:	 Feedback	 can	 come	 in	 from	 social	 networks,
customer	 support	 pages,	 or	 surveys.	 Like	 usability	 testing,	 this	 will
generally	be	more	powerful	 in	offer	context	 to	understand	metrics	 than	 in
gathering	numbers.
Traffic	 Analysis:	 Tools	 such	 as	 Google	 Analytics	 can	 help	 companies
understand	how	users	are	interacting	with	the	website.
Internal	 Logs:	 Logging	 information	 directly	 can	 help	 a	 company
understand	user	behavior	at	a	deeper	level	than	simple	traffic	analysis.
A/B	Testing:	A/B	Testing	can	help	a	company	understand	the	impact	of	a
particular	change	by	comparing	the	behavior	of	users	who	have	a	feature	to
those	 who	 don’t.	 While	 it	 is	 an	 incredibly	 useful	 tool,	 it	 can	 also	 be

misapplied.	 For	 example,	 rolling	 out	 a	 new	 chat	 feature	 to	 only	 a	 small
percentage	of	 users	might	 give	you	misleading	data	 about	 usage	patterns.
After	all,	I	can’t	use	chat	if	none	of	my	friends	are.

Interview	Questions
While	 not	 all	 interview	 questions	 fit	 cleanly	 into	 one	 of	 the	 categories	 below,
many	do	–	or	at	 least	overlap	several	categories.	Below	are	 the	major	 types	of
case	 questions	 and	 how	 to	 approach	 them.	 These	 types	 include	 questions	 on
strategy,	marketing,	launching,	brainstorming,	pricing,	and	problem	solving.

For	 each	 type	 of	 question,	 a	 structured	 approach	 is	 vital.	 Find	 a	way	 to	 break
down	a	problem	into	components	and	then	tackle	each	part.

Strategy	Questions
Strategy	questions	include	asking	what	a	company’s	strategy	is	or	how	to	design
a	strategy.	It’s	important	to	think	about	a	product’s	strategy	at	two	levels:
	

Micro:	 What	 is	 the	 business	 model	 for	 the	 product?	 What	 steps	 is	 the
company	pursuing	to	succeed	on	that	model?	Will	customers	want	it?
Macro:	How	does	this	product	fit	 into	the	greater	vision	of	the	company?
Will	it	open	up	new	opportunities?	Does	it	secure	an	existing	market?

Many	 products	will	 be	 strategic	 on	 both	 levels.	 For	 example,	Amazon	Kindle
makes	money	on	its	own,	but	it	also	helps	Amazon	further	secure	its	position	as
the	go-to	place	to	buy	content.

In	discussing	the	micro-	and	macro-	strategy,	frameworks	such	as	SWOT	and	the
Five	Forces	might	be	particularly	useful.	Think	about	questions	such	as:
	

What	is	the	company’s	mission?
What	are	the	company’s	goals?
What	are	the	company’s	strengths?
What	are	the	company’s	weaknesses?
How	is	the	company	leveraging	its	strengths	or	minimizing	its	weaknesses?

Thinking	about	these	questions	at	the	micro	and	macro	level	and	then	applying
their	actions	to	it	could	help	you	describe	a	company’s	strategy.

Potential	strategies	for	decisions	could	include:
	

Diversifying	revenue	sources.	A	company	might	want	to	diversify	revenue
sources	 so	 drastic	 changes	 in	 the	 market	 or	 the	 emergence	 of	 a	 new
competitor	doesn’t	tank	the	company.
Building	 Barriers	 to	 Entry:	 Building	 barriers	 to	 entry	 helps	 keep	 new
competitors	out	and,	therefore,	protect	a	company’s	revenue.	For	example,
Facebook’s	ownership	of	 the	social	network	makes	it	difficult	(though	not
impossible)	to	successfully	compete	in	the	event	management	tools	space.
Being	the	“One-Stop	Shop	for	_____”:	A	company	might	want	to	expand
their	 product	 suite	 around	 a	 particular	 area	 as	 a	 barrier	 to	 entry	 for
competitors.	For	example,	due	to	its	breadth	of	products,	Amazon	is	seen	as
the	place	you	go	to	for	purchasing	anything.	Companies	that	threaten	this	in
some	way	by	leading	in	a	particular	product	area	are	acquisition	targets	for
Amazon.
Being	 the	 Low-Cost	 Leader:	 Being	 the	 cheapest	 will	 cut	 your	 profit
margins,	 but	 it	 will	 also	 make	 the	 industry	 less	 attractive	 to	 current	 and
potential	competitors.	Note	that	there’s	a	difference	between	actively	trying
to	ensure	your	prices	are	the	cheapest	and	being	forced	to	cut	your	price	to
compete.	 The	 former	 is	 a	 pro-active	 strategic	 decision;	 the	 latter	 is	 a
consequence.
Reducing	 Reliance	 on	 a	 Key	 Buyer	 or	 Supplier:	 Reliance	 on	 a	 single
buyer	can	force	you	to	meet	their	demands,	and	reliance	on	a	supplier	could
cause	unexpected	delays	or	drops	in	quality.
Testing	a	New	Market:	In	some	cases,	a	company	will	enter	a	new	market
with	 a	 niche	 product	 as	 a	 way	 of	 testing	 it	 out,	 building	 its	 brand,	 and
learning	more	about	the	territory.	The	“real”	product	comes	later.

This	 list	 is	 just	 to	 give	 you	 a	 taste	 of	 what	 strategies	 could	 be	 underlying	 a
decision.	Many,	many	more	 strategies	 are	 out	 there.	 It	might	 be	 useful	 during
your	interview	preparation	to	keep	a	list	of	key	strategies	you	see.

Example
Facebook	 bought	 Instagram	 for	 about	 $1	 billion,	 even	 though	 Instagram
was	making	no	money.	Why	do	you	think	Facebook	did	this?

Answering	 this	 question	 does	 not	 require	 a	 strong	 knowledge	 of	 Instagram.
That’s	not	what	the	interviewer	cares	about.	A	strong	answer	for	someone	who
doesn’t	know	much	about	Instagram	might	look	like	the	following:

Hmm,	 interesting	 question.	 To	 be	 honest,	 I	 haven’t	 really	 used	 Instagram

much,	 but	 I’m	 vaguely	 familiar	 with	 it.	 And	 I’m	 of	 course	 familiar	 with
Facebook.	Let	me	break	this	down	by	discussing	the	key	components	of	the
acquisition	 and	 then	 how	 those	 aligned	 with	 or	 threatened	 Facebook’s
mission.

Facebook’s	mission	 is	 to	 connect	 people	 and	 help	 them	 share	 their	 lives.
This	acquisition	involved	acquiring	three	things:	the	company	(employees),
the	product,	and	the	users.	Let’s	think	about	these	with	respect	to	Facebook.

While	I’m	sure	Instagram	had	some	very	talented	employees,	the	company
was	still	pretty	small	at	that	time.	I	can’t	imagine	that	was	a	strong	driver	of
the	$1	billion	acquisition.

The	product	is	a	bit	more	interesting.	Instagram	created	a	beautiful	photo-
sharing	 product,	 and	 this	 was	 probably	 pretty	 scary	 to	 Facebook.	 Photo
sharing	is	really	vital	to	a	company	whose	mission	is	helping	people	share
their	lives;	it	was	a	big	draw	of	Facebook	and	a	key	strength.	But	another
company	was	truly	excelling	there	and	basically	beating	Facebook	(at	least
in	 certain	 aspects)	 at	 its	 own	 game.	 What	 happens	 when	 people	 start
increasingly	using	Instagram	instead	of	Facebook	for	photo	sharing?	It’s	a
big	threat.

The	users	are	 the	other	big	part	of	 the	acquisition.	As	 I	 recall,	 Instagram
had	a	 ton	 of	 users	 as	 of	 the	 acquisition	 and	had	 essentially	 built	 its	 own
social	 network.	 This	 is	 of	 course	what	Facebook	 is	 all	 about	 and,	 again,
Instagram	 had	 succeeded	 there.	 What	 happens	 as	 their	 social	 network
grows?	 Will	 other	 companies	 (particularly	 creative	 sites	 like	 Etsy)	 start
integrating	 with	 Instagram	 instead	 of	 Facebook?	 The	 size	 of	 Facebook’s
user	 base	 is	 the	 big	 barrier	 to	 entry	 for	 competitors,	 and	 every	 social
network	loosens	Facebook’s	grip	a	bit.

Ultimately,	it	seems	like	what	Facebook	might	have	seen	is	this	hot,	young
startup	which	 had	 suddenly	 started	 excelling	 in	 two	 areas	 of	 strength	 for
Facebook:	 photos	 and	 community.	 Facebook	 probably	 felt	 they	 couldn’t
afford	 to	risk	 those	areas	or	even	allow	another	major	player	 there.	Plus,
there	also	may	have	been	a	fear	of	what	Instagram	might	do	next	–	or	what
might	happen	if,	say,	Google	got	their	hands	on	Instagram	instead.

This	 candidate	might	 have	missed	 some	 aspects	 of	 the	 acquisition	 (such	 as	 an
opportunity	for	Facebook	to	excel	in	mobile).	That’s	an	understandable	oversight

for	someone	unfamiliar	with	Instagram	or	Facebook’s	mobile	strategy.

Note	 how	 the	 candidate	 has	 structured	 her	 answer.	 She’s	 broken	 down	 the
acquisition	 into	 its	components,	and	 then	blended	 in	 some	aspects	of	a	SWOT
analysis:	 strengths,	 weaknesses,	 and	 threats.	 This	 is	 one	 way	 the	 earlier
frameworks	might	be	applied.

She	then	wrapped	up	her	response	with	a	clear,	succinct	conclusion.

Sample	Questions
	

1.	Describe	the	strategy	behind	Google	entering	the	cell
phone	market.

2.	Amazon	has	 a	 number	 of	 independent	websites	 that,
in	some	ways,	duplicate	the	functionality	of	Amazon:
Zappos	 (shoes	and	clothing);	Diapers.com	(baby	and
kid	 needs);	 YoYo.com	 (kids’	 toys);	 Look.com	 (kids’
clothing);	 Soap.com	 (toiletries);	 Casa.com	 (house
products).	 What	 do	 you	 think	 their	 strategy	 is	 in
maintaining	 so	 many	 different	 websites	 with	 such
similar	 functionality?	Do	you	 agree	or	 disagree	with
it?

3.	 If	 you	 were	 Amazon,	 would	 you	 launch	 service	 in
India?	Why	or	why	not?	How	would	you	do	this?

4.	Amazon	has	ads	on	 its	website	 for	products	you	can
buy	 on	 other	 websites.	 What	 do	 you	 think	 is	 the
strategy	there?	Is	it	a	good	idea?

5.	Do	you	think	Apple	should	sell	non-Apple	products	in
its	stores?	Why	or	why	not?

6.	 If	 you	 were	 responsible	 for	Microsoft	 phones,	 what

would	you	do?
7.	Which	Google	products	or	services	don’t	make	sense
to	you?	Why?

8.	 If	you	were	CEO	of	Yahoo!,	what	would	your	strategy
be?

9.	 Imagine	 you’re	 starting	 up	 a	 new	 social	 networking
service.	What	would	your	strategy	be?

10.	 Imagine	you	were	considering	launching	two	services
which	 have	 similar	 revenues	 and	 costs.	 How	 would
you	decide	which	one	to	pursue?

Marketing	Questions
Marketing	 questions	 are	 about	 product	 positioning,	 customers,	 and	 handling
competition.	The	Marketing	Mix	(4	Ps)	is	particularly	useful	here	in	offering	an
idea	 of	 the	 elements	 you	might	 discuss.	Aspects	 of	 SWOT,	 the	 5	Cs,	 and	 the
Customer	Purchase	Decision	Making	Process	also	come	in.

In	tackling	these	questions,	you	might	try	an	approach	like	the	following:
	

1.	Understand	the	Company:	What	are	the	company’s
goals?	What	is	its	mission?	What	are	its	strengths	and
weaknesses?	What	threatens	it?

2.	Understand	 the	 Competition:	 Break	 down	 the
competition	 into	 segments.	 Who	 competes	 and	 in
what	market?	How	do	they	position	themselves?	How
entrenched	 are	 they?	 What	 are	 their	 strengths	 and
weaknesses?

3.	Understand	 the	 Customers:	 Who	 are	 your
customers?	 What	 desire	 or	 need	 is	 this	 product

fulfilling?	What	 is	 the	 purchase/usage	 behavior	 like
(one	time	only,	repeated	purchases,	etc.)?

4.	Understand	the	Landscape:	Are	 there	 legal	 issues?
If	you’re	focusing	on	a	particular	region,	what	makes
this	 region	 unique	 (e.g.,	 frequent	 power	 outages)?
What	external	forces	are	shaping	your	market?

5.	Market	 Your	 Product:	 Using	 the	 information	 you
discussed	 in	 the	earlier	steps,	decide	on	aspects	such
as	 the	 product	 and	 its	 positioning	 and	 how	 you	will
promote	it	(think	about	the	customer	decision	making
process	here).	Depending	on	your	interviewer	and	the
question,	you	might	also	want	 to	discuss	pricing	and
distribution.

Note	 how	 a	 good	 chunk	 of	 the	 response	 covers	 just	 background	 information.
That’s	to	be	expected;	the	marketing	plan	should	follow	from	that	discussion.

Example	Question
How	would	you	market	Windows	Phone	to	developers	(to	encourage	them
to	adopt	it)?

Well,	 let	me	 first	 think	 a	 bit	 about	 what	 the	market	 looks	 like	 right	 now,
including	the	company,	competition,	customers,	and	general	landscape.

	

As	I	understand	it,	Microsoft’s	goal	with	respect	to	developers	is	to	increase
the	 number	 of	 high	 quality	 apps.	 Windows	 Phone	 has	 fairly	 low	 market
share	right	now,	which	 is	 the	main	barrier	 to	 this	happening:	 It’s	 just	not
interesting	 as	 a	 development	 platform.	On	 the	 other	 hand,	 its	 strength	 is
that	 Windows	 is	 dominant	 in	 the	 desktop	 market.	 This	 means	 ease	 of
development	 and	 a	 strong	 brand	 name,	 at	 least	 in	 some	 senses.	 This	 is
something	for	Microsoft	to	leverage.
The	 two	 biggest	 competitors	 are	 iPhone	 and	 Android.	 The	 iPhone	 is

excelling	in	the	higher-end	market,	which	draws	developers	to	the	platform.
The	perception	 is	 that	 iPhone	users	 download	and	 spend	more	money	on
apps.	 The	 Android	 phone	 is	 interesting	 to	 developers	 due	 to	 its	 market
share,	but	it	can	also	be	frustrating	because	of	the	large	number	of	devices
to	support.
The	 customers,	 in	 this	 case,	 are	 the	 developers	 –	 but	 obviously	 their
decision	will	be	somewhat	based	on	what	users	want	as	well.	There	are	a
lot	 of	 types	 of	 developers:	 hobbyists,	 enterprise	 developers,	 startup
developers,	 etc.	 Developers	 want	 a	 fast	 and	 easy	 language	 to	 build	 a
product	with	and	the	ability	to	push	out	their	product	to	as	many	users	as
possible.
The	 last	 thing	 to	discuss,	before	going	 into	a	potential	marketing	plan,	 is
the	 environment.	 We	 want	 to	 think	 about	 any	 trends	 that	 might	 open	 up
holes	in	the	market.	One	trend	is	the	relative	gap	in	the	enterprise	market,
left	by	Blackberry’s	decline.	The	iPhone	and	the	Android	have	filled	in	that
gap	a	bit,	but	there	may	still	be	some	room	there	(particularly	if	you	can	get
the	 backing	 of	 IT/system	 administrators).	 Another	 relevant	 part	 of	 the
environment	is	the	diversity	of	phones	from	country	to	country.	I	don’t	know
the	statistics	on	this,	but	I	suspect	there	are	some	markets	where	iPhone	and
Android	haven’t	really	dominated	yet.

Now	for	the	marketing	plan:	I	think	the	key	things	we	want	to	focus	on	are
(1)	 making	 development	 on	 our	 platform	 as	 frictionless	 as	 possible;	 (2)
ensuring	the	top	apps	on	iPhone	and	Android	also	have	a	Windows	Phone
version;	 and	 (3)	 finding	 an	 opening	 in	 the	 market.	 Our	 positioning	 to
developers	 is	 that	 we’ll	 make	 it	 easy	 to	 develop,	 maintain,	 and	 sell	 your
app.

	

As	far	as	making	development	easy:	We	already	have	a	leg	up	here,	in	that	many	developers	already
know	Windows	development.	We	need	to	create	an	excellent	set	of	tutorials	and	sample	code	to	teach
Windows	Phone	development.	Let’s	try,	if	possible,	to	offer	amazing	APIs	that	developers	can	stick	in
their	app	to	build	key	functionality	–	like	plug-and-play	coding.

Additionally,	because	developers	might	struggle	to	find	help	on	the	web,	we	need	to	offer	that	help
ourselves.	 We	 need	 to	 foster	 a	 community	 around	 Windows	 Phone	 development	 and	 offer	 free
development	support.

We	need	 to	 tackle	where	 iPhone	and	Android	are	weaker	 in	a	development	 environment.	 I	haven’t
done	 much	 mobile	 development	 myself,	 but	 I’ve	 heard	 iPhone	 developers	 complain	 about	 the
insufficient	data	on	tracking	where	downloads	came	from.	Let’s	excel	in	this	area.

Ensuring	that	the	top	apps	from	both	Android	and	iPhone	are	on	Windows	will	take	very	proactive
outreach.	We	need	to	track	what	apps	are	popular	on	those	platforms.	If	they	don’t	have	a	Windows
phone,	give	them	one.	We	can	possibly	even	help	them	with	testing	and	support	in	order	to	bring	the
quality	up	to	par,	particularly	if	it’s	just	a	single	developer	and	not	a	full	company	or	startup.

The	biggest	market	opening	is	probably	in	the	enterprise	space,	so	this	might	be	where	we	want	to
focus.	We	can	push	for	enterprise	developers	and	IT	folk	to	specialize	in	developing	and	supporting
Windows	Phones;	many	of	 them	already	do	Windows	development,	so	 this	 isn’t	a	big	stretch.	 If	we
offer	better	tools	to	support	their	employees,	this	might	encourage	them	to	pick	Windows	over	iPhone
and	Android	for	company-provided	phones.

This	 plan	 is	 designed	 to	 communicate	 to	 developers	 that	 we	 have	 a	 full
ecosystem	 of	 tools:	 tutorials,	 APIs,	 technical	 support,	 free	 devices,
community,	analytics,	administration	tools,	etc.	This	will	differentiate	us	in
the	eyes	of	developers;	we’re	putting	them	first	 to	make	us	the	fastest	and
easiest	phone	to	develop	for	and	support.

This	isn’t	necessarily	the	best	or	only	acceptable	marketing	plan.	There	are	many
marketing	 plans	 that	 might	 be	 acceptable	 here—even	 ones	 that	 lead	 to	 an
entirely	different	and	contrary	conclusion.

After	all,	you	aren’t	provided	with	data,	so	you	have	to	rely	on	what	you	know—
or	think—to	be	true.	If	you’re	misinformed	about	something,	you	could	wind	up
making	 a	 recommendation	 that	 your	 interviewer	 knows	 would	 utterly	 flop.	 A
good	 interviewer	 might	 mark	 you	 off	 a	 little	 for	 the	 misinformation	 (since
industry	 knowledge	 can	 be	 important),	 but	 should	 evaluate	 the	 rest	 of	 your
response	taking	your	understanding	to	be	“fact.”

Remember	the	goal	of	these	questions	is	showing	you	can	apply	structure	to	an
open-ended	 problem,	make	 good	 business	 decisions,	 and	 think	wisely	 about	 a
product’s	marketing.	You	can	do	all	of	these	things	even	with	“bad”	information.

Sample	Questions
	

1.	What	 is	 a	 product	 you	 think	 is	marketed	well?	How
would	you	improve	it?

2.	How	would	you	market	Gmail	in	China?

3.	How	would	you	market	the	Android	tablet?
4.	What	 do	 you	 think	 of	 Google’s	 marketing	 for	 its
social	products?	How	would	you	improve	it?

5.	How	would	you	market	the	next	version	of	Windows?
6.	How	 would	 you	 choose	 a	 market	 for	 expansion	 for
Amazon	Web	Services?

7.	Discuss	 how	 you	 think	 Whole	 Foods	 is	 currently
marketed.	 What	 works	 well?	 What	 could	 they	 do
better?

8.	How	would	you	market	a	mobile	app	to	track	weight,
calorie	consumption,	and	exercise?

9.	How	would	you	market	Google	Docs	to	schools?
10.	Describe	 how	 you	 would	 market	 a	 magazine

subscription	service	for	Kindle.

Launching	Questions
Launching	 products	 is	 one	 of	 the	most	 important	 duties	 of	 a	 PM,	 so	 it	makes
sense	that	interviewers	would	ask	how	you	would	do	this.

To	tackle	these	questions,	the	following	approach	might	work	well:
	

1.	 The	Product:	Discuss	the	vision	of	the	product,	along
with	 its	 strengths,	weaknesses,	 and	 risks.	What	 does
the	 product	 ultimately	 hope	 to	 achieve?	What	 is	 its
target	market?	What	are	 the	 things	 that	would	worry
you?	 Who	 is	 it	 competing	 against	 and	 how	 is	 it
positioned	against	those?

2.	 Launch	 Goals:	 Determine	 the	 goals	 of	 the	 launch.

Do	you	want	as	many	users	as	possible?	Do	you	want
to	 ensure	 profitability	 upfront?	 Do	 you	 want	 to
validate	 that	 the	 product	 meets	 the	 market’s	 needs?
Do	you	want	to	ensure	a	positive	reaction	(even	at	the
expense	of	slower	growth)?

3.	 Launch	 Design:	 Now	 that	 you	 know	 the	 goals,
determine	how	you	will	 achieve	 those.	What	market
would	 be	 a	 good	 test	 bed?	Will	 you	 control	 growth
through	an	invitation	system?	Will	you	roll	out	just	a
limited	 version	 of	 the	 product	 so	 you	 can	 launch
earlier?	 Will	 you	 try	 to	 make	 the	 biggest	 possible
splash	and	get	as	many	users	as	possible?

4.	 Launch	 Implementation	 (Pre	 +	 During	 +	 Post):
With	 the	 basic	 design	 set,	 you	 now	 need	 to	 actually
describe	how	you	would	implement	this	design.	Break
down	 your	 approach	 into	 three	 phases:	 pre-launch
tasks,	launch	tasks,	and	post-launch	tasks.	Launching
is	not	just	a	day-of	process.

Your	 launch	 implementation	 discussion	 should	 cover	 the	 following	 aspects,
possibly	for	each	phase	of	launch:
	

Target	 Market:	 Will	 you	 initially	 launch	 for	 just	 a	 particular	 city	 or	 a
particular	school?	What	is	your	initial	target	market?
User	Types	/	Components:	If	there	are	multiple	types	of	users	(e.g.,	drivers
and	riders),	we	may	launch	to	these	users	separately:	at	different	times	and
in	different	ways.
MVP	or	Full	Product:	Will	you	launch	an	early	minimum-viable	product
(MVP),	or	will	you	wait	until	the	product	is	fairly	full	featured?
Distribution:	 What	 stores	 and	 sales	 channels	 will	 carry	 your	 product?

What	platforms	will	you	launch	on?
Rollout:	When	will	it	launch	to	different	types	of	users?	Are	you	going	to
start	with	a	private	beta?	Will	invitations	be	required?
Buzz:	How	will	 you	build	 buzz	 around	your	 product	 (or	will	 you)?	Who
will	you	reach	out	to?	How	will	you	get	them	on	board?	What	do	you	want
them	to	say	about	your	product?
Partnerships:	Are	there	any	partnerships	that	will	help	you	to	achieve	your
vision?
Risks:	What	are	the	risks	of	the	product,	and	how	can	you	mitigate	them?
Are	there	legal	challenges?	Do	you	worry	about	a	backlash	from	customers
about	privacy	changes?

In	thinking	about	these	decisions,	it	might	be	useful	to	think	about	the	Customer
Purchase	Decision	Making	Process.	Which	parts	will	be	 the	most	challenging?
How	will	you	overcome	that?

Some	of	the	possible	launch	activities	are	depicted	in	the	below	figure2.

Example	Question
Imagine	 you’re	 building	 a	 service	 to	 connect	 people	 with	 a
recommendations/booking	service	for	local	service	providers	(plumbers,	etc.)	–
like	an	OpenTable	for	service	providers.	How	would	you	launch	this	product?

A	candidate	could	respond	with	an	answer	like	the	following.

Okay,	just	to	get	this	straight,	what	I’m	imagining	is	a	place	where	people

could	 search	 for,	 say,	 a	 plumber	 or	 an	 electrician	 and	 see	 reviews.	 They
could	probably	 request	an	open	 time	slot	 (if	 that’s	possible)	or	post	a	 job
and	get	bids.

When	I	think	about	this	product,	it	feeds	a	clear	need.	I	don’t	know	of	other
direct	competitors	to	this.

One	of	the	challenges	we’ll	face	–	and	thus	one	of	the	things	we’ll	need	to
design	our	launch	around	–	is	that	it’s	a	chicken	and	egg	problem.	We	have
two	 types	 of	 users:	 service	 providers	 and	 clients.	 Service	 providers	won’t
want	 to	 join	until	 there	are	enough	clients,	and	clients	won’t	want	 to	 join
until	there	are	enough	service	providers.

The	other	challenge	I	suspect	we’ll	 face	is	being	top	of	mind	when	a	user
needs	a	service	provider.	We’re	 trying	 to	change	user	behavior,	and	 that’s
always	hard.

We	want	to	design	our	launch	to	handle	these	two	issues.	In	fact,	given	the
challenges	we’re	 up	 against	 and	 given	 the	 odds	 that	we	won’t	 get	 things
quite	 right	 the	 first	 time,	 I	 think	 it’s	 important	 we	 launch	 early	 with	 a
minimum	viable	product.

To	 tackle	 the	 first	 problem,	we’ll	 want	 to	 establish	 a	 strong	 user	 base	 of
service	providers	first	in	a	focused	area	(ideally,	an	affluent	area	with	a	lot
of	homeowners).	We’ll	do	a	controlled	launch	where	we	can	throttle	client
signup	if	it	gets	too	high	relative	to	the	number	of	providers.

To	 tackle	 the	 second	 problem,	 we’ll	 need	 to	 make	 ourselves	 more	 top	 of
mind.	The	best	way	to	do	this	is	probably	by	focusing	on	services	that	are
more	regularly	used:	housecleaners,	drivers,	gardeners,	pool	cleaners,	etc.

I	think	we’ll	need	to	launch,	at	the	minimum,	both	a	web	client	and	mobile
client	 for	 providers,	 and	 one	 or	 the	 other	 for	 clients.	 The	 providers	 need
both	since	the	mobile	client	allows	them	to	take	bookings	on-the-go,	and	the
web	 will	 help	 support	 providers	 without	 phones.	 For	 clients,	 I’d	 suggest
that	 we	 start	 off	 with	 a	 web	 client.	 I	 do	 think	 the	 mobile	 client	 is	 really
important,	 but	 it	 requires	 building	 for	 multiple	 operating	 systems.	 Given
that	we	need	to	get	something	out	ASAP,	I	think	it’s	best	to	just	do	one	for
now.

In	 the	months	before	 launch,	we’ll	 start	with	getting	providers	 signed	up.

They	 are	 less	 likely	 to	 get	 turned	 off	 than	 clients	 are	 by	 a	 mismatch	 in
supply	or	demand	for	providers.

We’ll	pull	providers	from	two	places.	First,	we’ll	pull	them	from	review	sites
such	as	Yelp	and	from	community	blogs	and	forums.	Second,	we’ll	reach	out
to	 real	 estate	 agents.	 They	 tend	 to	 be	 a	 go-to	 place	 for	 advice	 for	 new
homeowners.	We	want	them	to	know	about	our	product,	and	we	also	want
their	list	of	recommended	providers.	An	active	sales	force	will	be	necessary
to	do	this.

For	the	launch	to	clients,	we’ll	do	an	invite-only,	slow	launch.	We	want	to
incentivize	people	to	invite	their	friends	though,	so	we	may	offer	some	sort
of	credit	to	people	who	invite	their	friends.

To	build	buzz,	we’ll	also	want	to	engage	with	the	local	community.	We	could
have	 physical	 signage	 at	 popular	 cafes,	 reach	 out	 to	 local	 blogs,	 use
Facebook	groups	about	 the	community,	etc.	A	 lot	of	areas	have	 their	own
newspapers,	so	we	could	try	that	too.

Post-launch,	we	want	to	analyze	metrics	on	signups,	conversion,	etc.	One	of
the	things	I	expect	we’ll	find	is	that	many	people	sign	up	and	then	forget	to
use	us	when	an	issue	comes	up.	We	will	need	to	track	this	carefully,	as	this
will	be	a	big	challenge	for	us.

It’s	 not	 just	 a	 numbers	 game,	 though:	 We	 really	 need	 to	 build	 a	 strong
relationship	with	 the	service	providers.	We	want	 them	 to	be	advocates	 for
the	site.	 If	 they	can	encourage	existing	clients	 to	use	 it,	 then	 those	clients
may	use	it	for	other	services,	too.	We	also	need	their	feedback	to	enable	us
to	perfect	the	site.

So,	to	recap,	we’re	doing	the	following:	We’ll	build	a	mobile	and	web	client
for	providers,	and	just	a	web	client	for	users.	We’ll	solicit	providers	through
Yelp,	 community	 blogs	 and	 forums,	 and	 real	 estate	 agents,	 paying
particular	attention	 to	recurring	services	such	as	gardeners	and	cleaners.
We’ll	launch	in	a	localized	community	–	Silicon	Valley	is	probably	a	good
candidate	–	getting	as	many	providers	 signed	up	as	possible.	The	 service
will	be	gradually	rolled	out	to	clients	with	an	invite-only	registration.	We’ll
maintain	strong	relationships	with	providers	and	clients	and	make	it	a	point
to	excel	in	customer	service.	This	will	ensure	we	get	the	feedback	we	need
to	refine	our	product.

This	candidate	has	recognized	that	this	is	really	two	launches	in	one:	a	consumer
launch	and	a	provider	launch.	He	has	then	walked	through	how	to	launch	in	both
of	those	markets	and	discussed	key	problems	we	might	face.	Finally,	he	wrapped
up	with	an	overview	of	his	overall	plan.

Sample	Questions
	

1.	Describe	a	product	you	think	had	a	successful	launch.
Why?

2.	Describe	a	product	you	think	launched	poorly,	despite
being	 a	 good	 product.	 What	 would	 you	 have	 done
differently?

3.	How	would	you	launch	the	Google	Self-Driving	Car?
4.	 Suppose	 Yahoo	 were	 to	 build	 a	 phone.	 How	 would
you	launch	this?

5.	How	 would	 you	 launch	 an	 electronics	 store	 for
Amazon.com?

6.	Google	 is	 considering	 a	 version	 of	 Google	 Docs
designed	 for	 large	 enterprises.	 How	 would	 you
manage	this	launch?

7.	You’re	 working	 for	 a	 company	 that	 helps	 people
create	 better	 online	 ads.	 How	 do	 you	 launch	 this
product?

8.	You	have	built	a	superior	water	bottle:	it	keeps	drinks
hot	 and	 cool,	 it’s	 sturdy,	 and	 it	 never	 spills.	 How
would	you	launch	this	product?

9.	You	have	developed	a	car	that	takes	a	different	type	of
fuel.	This	new	fuel	source	is	very	cheap,	but	works	as

well	as	standard	fuel.	How	would	you	launch	this	car?
10.	How	would	you	 launch	a	grocery	delivery	service	 in

India?

Brainstorming
Brainstorming	questions	are	about	creativity.	 Interviewers	want	 to	see	 that	you
aren’t	stuck	 in	a	mindset	of	 just	doing	 the	same	old	 thing.	They	want	 to	know
you	can	come	up	with	“big,	hairy,	audacious	ideas.”

For	some	people,	this	is	difficult.	They’re	scared	of	looking	stupid,	or	they	just
get	flustered	and	think	too	linearly.

If	you’re	asked	a	brainstorming	question,	try	to:
	

1.	 Suspend	 disbelief.	 It’s	 okay	 to	 name	 a	 few	 stupid
ideas,	particularly	because	so-called	“stupid”	ideas	are
often	 the	 crazy	 ideas	 that	 get	 interviewers	 excited.
Getting	 caught	 up	 in	 “Is	 this	 even	 good	 enough	 to
mention?”	 is	 a	 good	way	 to	 kill	 your	 creativity.	 Let
your	imagination	run	wild!

2.	 Think	 about	 strengths	 and	 key	 assets.	 If	 you	 find
yourself	 stumped	 coming	 up	with	more	 ideas,	 try	 to
forget	about	what	 the	product	 is	and	 just	 think	about
what	 its	strengths	and	key	features	are.	For	example,
consider	 a	 grocery	 cart.	 Its	 strengths	 are	 that	 it	 can
hold	a	 lot	and	 that	 it	 is	 relatively	compact	 (carts	can
be	“stacked”	inside	each	other).	A	key	feature	is	that	it
is	on	wheels.	What	can	you	do	with	those?

3.	 Think	about	one	vs.	many.	The	use	cases	when	you

just	have	a	single	object	might	be	different	than	when
you	have	many.	For	example,	one	golf	ball	 could	be
used	to	play	a	game.	A	pile	of	many	golf	balls	could
be	used	to	weight	down	a	tarp	in	the	wind.

4.	 Think	about	as-is	vs.	with	modifications.	An	object
can	be	used	as-is	or	it	can	be	used	with	modifications.
If	 you	 can	 do	modifications	 to	 the	 object,	 the	 scope
gets	much	broader.

Ideally,	 you	 want	 to	 go	 for	 “structured	 creativity.”	 Structure	 shows	 organized
thinking	 and	 helps	 your	 interviewer	 remember	 your	 answer	 better.	 However,
don’t	let	your	structure	get	in	the	way	of	your	communication.

After	you’re	done	brainstorming,	your	interviewer	might	ask	you	to	go	into	one
of	your	ideas	in	more	detail.

Example	Question
Name	some	innovative	ideas	for	a	vending	machine.

There	are	many	ways	to	respond	to	this	question.	Here’s	one	of	them.

Interesting.	Let	me	think	for	a	moment.

Okay,	so	first,	we	can	use	a	vending	machine	to	sell	 things	other	than	the
standard	food	and	drinks.	We	can	sell	basically	any	small	object.	We	could
use	a	vending	machine	to	sell	beer	at	a	bar,	or	we	could	use	it	to	sell	small
electronics,	cosmetics,	etc.

It	could	be	used	outside	of	 just	 the	standard	“sell	small	object”	situation,
though.

What	 a	 vending	 machine	 is	 good	 at	 is	 distributing	 exactly	 one	 copy	 of
something	 –	 without	 breaking	 it	 –	 in	 a	 totally	 automated	 way.	 The
automation	 is	 interesting	 because	 someone	 doesn’t	 have	 to	 be	 present.
Where	else	could	this	be	used?

It	could	be	used	as	an	alternative	to	stores.	Perhaps	the	owners	of	a	small

store	could	use	a	vending	machine	as	a	way	to	sell	a	limited	amount	of	their
merchandise	while	 they’re	 closed.	They	 could	 even	use	 it	 to	 speed	up	 the
sale	of	some	express	items	during	busy	times	of	the	day.

Or,	 if	 there	were	 a	way	 of	modifying	 the	 vending	machine	 so	 that	 people
could	 insert	 items	 back	 into	 it,	 this	 could	 be	 used	 to	 rent	 things	 such	 as
phone	 chargers.	 The	 beauty	 of	 that	 is	 if	 the	 person	 doesn’t	 return	 it,	 you
have	their	credit	card	on	file.

This	might	even	be	useful	for	situations	where	merchandize	is	too	valuable
to	 leave	 just	 sitting	 out.	 A	 lot	 of	 stores	 have	 pricier	 items	 such	 as	 razor
blades	in	locked	shelves,	and	customers	have	to	get	a	clerk	to	unlock	it.	If
people	could	just	swipe	their	credit	card	and	pay	instantly,	it’d	be	better	for
everyone.

Okay,	let	me	try	to	think	even	more	abstractly	now.	A	vending	machine	has
the	following	attributes	or	components:

	

A	big	glass	window	showing	the	items.
A	refrigerator.
The	ability	to	locate	a	specific	item	on	a	shelf	in	an	automated	way.
A	credit	card	processor.
A	change	machine.
Some	way	to	validate	that	cash	isn’t	counterfeit.
A	way	to	prevent	people	from	sticking	their	hand	in	and	grabbing	a	bunch
of	items.

It’s	also	very	heavy	and	automated.

We	 could	 use	 the	 glass	 window	 to	 display	 other	 types	 of	 items	 –	 small
pieces	of	art,	perhaps.	We	can	use	the	refrigerator	as	a	normal	fridge.

We	could	also	combine	some	parts.	For	example,	if	we	had	an	old	vending
machine	lying	around,	it	could	probably	be	modified	to	let	people	withdraw
cash	from	their	credit	cards.

This	 ability	 to	 locate	 items	 at	 a	 specific	 row	 and	 column	 is	 interesting.
Presumably	 it	 could	 also	 do	 this	 for	 multiple	 items	 at	 once.	 This	 sort	 of
automation	could	be	very	useful	in	some	industries,	particularly	when	they

want	 to	 reduce	 human	 error.	 Perhaps	 for	 pharmacists	 or	 doctors	 to
distribute	drugs	and	know	they	have	the	right	one.

I	think	that’s	a	pretty	good	list	for	now.	Would	you	like	me	to	keep	going,	or
is	there	one	particular	idea	you’d	like	me	to	dive	into?

This	 candidate	went	with	 a	 “broadening”	 approach.	The	 answer	 started	with	 a
pretty	 straightforward	 list	 of	 use	 cases	 for	 a	 vending	machine,	which	used	 the
technology	in	“expected”	ways.	Then,	later,	the	answer	broke	down	the	machine
by	component	and	discussed	other	ways	of	using	those	components.

He	potentially	could	have	gone	even	broader.	He	could	have	discussed	uses	for	a
group	 of	 vending	 machines,	 or	 he	 could	 have	 analyzed	 modifications	 to	 the
machine	that	could	make	it	behave	in	different	ways.

Sample	Questions
	

1.	 Suppose	 you’re	 a	 manufacturer	 of	 paper	 clips	 and
have	realized	people	no	longer	need	paper	clips.	How
else	could	you	market	your	paper	clips?

2.	Name	as	many	uses	as	you	can	for	a	wine	glass.
3.	Name	 some	 ways	 you	 could	 integrate	 Amazon
products/services	into	a	car.

4.	 Imagine	you	had	access	to	an	enormous	database	that
transcribed	 all	 speech	 everywhere	 in	 the	 world.	 As
soon	 as	 someone	 says	 something,	 it	 is	 automatically
transcribed	 and	 put	 into	 the	 database.	 It	 is	 also
trivially	 fast	 to	 query	 anything.	 What	 products	 or
services	could	you	build	with	this	database?

5.	How	 could	 you	 integrate	 internet	 into	 a	 gym?	What
products	or	services	could	you	create	or	improve?

6.	 If	you	were	the	CEO	of	Nike,	what	new	product	line

would	you	come	up	with?
7.	You	are	working	at	Apple	and	 instructed	 to	 launch	a
product	 that	 is	 not	 technical.	 What	 ideas	 can	 you
come	up	with?

8.	You	are	suddenly	given	a	very	large	(1000+)	number
of	 old	 desktop	 computers	 with	 old	 CRT	 monitors.
What	could	you	do	with	them?

9.	Name	as	many	uses	as	you	can	for	chopsticks.
10.	How	would	you	 improve	 the	experience	of	shopping

in	 a	 supermarket?	 Assume	 that	 even	 farfetched
technology	 is	 within	 reach	 (provided	 that	 it’s	 not
actually	impossible).

	

Pricing	&	Profitability
Pricing	questions	are	aimed	to	get	you	to	maximize	profit,	which	is	of	course	the
difference	between	revenue	and	costs.	In	an	ideal	world,	we’d	have	supply	and
demand	 charts	 that	 express	 how	 sales	 volume	 would	 change	 based	 on	 the
pricing.	We	would	then	be	able	to	pinpoint	exactly	when	profit	is	maximized.

In	the	real	world,	we	don’t	have	any	of	this	data.	The	goal	–	to	maximize	profit	–
is	still	 the	same,	but	the	process	is	different.	People	generally	use	any	or	all	of
the	following	to	price	a	product:
	

Cost-Plus	Pricing:	Examine	the	costs	of	your	product	and	set	your	price	a
little	higher	than	that.	This	is	tricky	because	there	are	generally	fixed	costs
and	marginal	costs,	so	it’s	difficult	to	assess	the	cost	per	unit.	Additionally,
many	online	services	don’t	have	direct	costs,	and	the	costs	don’t	determine
whether	this	is	a	reasonable	price.	However,	the	cost	of	your	product	does
suggest	 a	 minimum	 price	 (presuming	 you	 want	 to	 make	 a	 profit)	 and
indicates	something	about	your	competitor’s	prices.
Value	 Pricing:	 Some	 products	 have	 a	 clear	 and	 direct	 value	 to	 the

customer.	 In	 those	 cases,	 you	 might	 be	 able	 to	 estimate	 how	 much
money/time	 you	 are	 saving	 (or	 gaining	 for)	 the	 customer	 and	 price
accordingly.
Competitive	 Pricing:	 A	 great	 number	 of	 products	 are	 priced	 by	 just
looking	at	 the	 competitors’	prices.	This	 is	 partially	 rational	 (because	your
customers	 might	 otherwise	 select	 your	 competitors)	 and	 partially	 due	 to
laziness	(because	people	don’t	know	how	else	 to	price	a	product).	Pricing
lower	 than	your	 competitors	 is	 not	 necessarily	 a	good	 thing;	 it	 can	 signal
lower	 quality	 to	 customers,	 and	 it	 might	 start	 a	 price	 war.	 However,
competitive	pricing	can	 still	be	a	 starting	point	 from	which	you	decide	 to
price	higher	if	your	product	is	positioned	as	a	premium	product.
Experimental	 Pricing:	 In	 some	 cases,	 it’s	 possible	 for	 a	 company	 to
experiment	with	different	prices	and	then	correlate	price	with	sales	volume.
Proceed	 with	 caution	 here,	 though;	 inconsistent	 pricing	 can	 frustrate	 or
anger	customers.

A	 thorough	 company	 might	 use	 cost-based	 pricing,	 value	 pricing,	 and
competitive	pricing	to	triangulate	on	a	good	price,	and	then	tweak	it	slightly	with
experiments.

With	these	general	approaches	in	mind,	there	are	a	number	of	pricing	models	to
consider:
	

Free,	Ad-Supported:	Many	 startups	 try	 this	 approach,	 but	 few	 succeed.
Advertising	 alone	 is	 rarely	 enough	 to	 support	 a	 company,	 unless	 there	 is
something	unique	about	your	product	which	makes	advertising	particularly
effective.
Freemium:	In	a	freemium	model,	a	basic	level	of	the	product	is	free	but	a
premium	 version	 is	 paid.	 This	 can	 be	 good	 for	 attracting	 customers.
However,	you	have	to	keep	a	close	eye	on	your	costs	for	supporting	these
free	users,	as	well	as	on	your	conversion	rate.
Tiered:	A	 company	might	 offer	multiple	 levels	 of	 pricing,	 segmented	 by
volume,	 customer	 type,	 or	 features.	 You	 don’t	 want	 to	 go	 overboard,
though;	too	many	tiers	can	be	overwhelming	for	customers.
À	La	Carte:	A	company	can	price	each	feature	or	service	separately,	letting
the	 customer	 choose	 exactly	which	 “upgrades”	 they	would	 like.	This	 can
often	 lead	 to	 customers	 paying	more	 than	 they	would	have	 for	 a	 bundled
suite	of	features.	Some	customers	will	like	this	flexibility	but	others	will	be

overwhelmed	 by	 it.	 The	 support	 costs	 of	 dealing	 with	 so	 many	 different
suites	of	features	can	also	be	challenging.
Subscriptions:	 Many	 services	 offer	 subscriptions	 to	 their	 product	 or
service,	 particularly	 in	 the	 case	 of	 web	 applications.	 Some	 products	 are
simultaneously	 available	 for	 purchase	 and	 as	 a	 subscription.	This	 enables
products	to	capture	customers	who	only	need	temporary	usage	and	may	not
be	willing	to	make	the	upfront	investment	in	a	full	purchase.
Free	Trial:	Short-term	trials	can	be	a	good	way	to	let	customers	experiment
with	a	product	before	the	purchase,	as	a	way	to	“hook”	them.	Trials	can	be
bounded	 by	 time,	 number	 of	 uses,	 or	 particular	 features	 (e.g.,	 you	 can
import	 but	 not	 export).	 You	 have	 to	 be	 careful	 to	 ensure	 a	 good	 enough
experience	that	customers	will	enjoy	the	product	but	not	so	good	that	they
don’t	desire	to	upgrade.
Razor	Blade	Model:	A	company	can	sell	one	component	(e.g.,	razors)	at,
near,	or	below	costs	with	 the	expectation	 that	 an	add-on	component	 (e.g.,
razor	blades)	will	bring	 in	additional	 revenue.	This	can	work	very	well	 if
the	customer	can	only	buy	these	add-on	components	from	you.	If	there	are
other	 competitors	 with	 compatible	 add-ons,	 then	 you	 run	 the	 risk	 of
customers	purchasing	 the	product	 from	you	cheaply	and	 then	 the	add-ons
from	your	competitor.	No	one	wins	(except	for	the	customer).

A	 pricing	 model	 could	 use	 a	 combination	 of	 many	 of	 these	 attributes.	 For
example,	 a	 company	 could	 offer	 subscriptions	 to	 its	 service,	 priced	 differently
depending	 on	 the	 size	 of	 the	 customer’s	 business,	 with	 additional	 upgrades
purchased	à	la	carte.

Online	Advertising
As	many	tech	companies	(most	notably	Google	and	Facebook)	have	advertising-
based	 business	 models,	 pricing	 questions	 around	 advertising	 come	 up
particularly	often.

Questions	 about	 advertising	 can	 seem	 complicated,	 but	 actually	 they	 usually
break	down	into	a	handful	of	standard	ratios	such	as	click-through-rate	(CTR),
cost-per-click	 (CPC),	 and	 conversion	 rate.	 Once	 you	 start	 thinking	 about	 the
problem	in	terms	of	those	ratios,	getting	to	an	answer	is	usually	pretty	easy.

You	will	need	to	understand	the	basics	of	how	online	advertising	works,	though.
Here’s	a	quick	overview.

Online	advertising	is	generally	priced	one	of	two	ways:
	

Pay-Per-Click:	An	advertiser	pays	only	when	a	person	clicks	on	their	ad.
This	means	that	if	their	ad	is	shown	1,000	times	but	only	clicked	twice,	the
advertiser	would	only	pay	for	those	two	clicks.
Pay-Per-Impression:	 An	 advertiser	 pays	 every	 time	 the	 ad	 is	 shown,
regardless	of	whether	or	not	the	user	interacts	with	the	ad.
Pay-Per-Action:	 An	 advertiser	 pays	 only	 when	 an	 action	 is	 performed
(e.g.,	the	customer	clicks	on	the	ad	and	purchases	the	product).	This	is	also
called	a	 “conversion.”	This	 is	 a	 rarely	used	model,	 in	part	because	of	 the
difficulty	of	tracking	conversions.

Google	 and	 Facebook	 offer	 both	 pay-per-click	 and	 pay-per-impression
advertising.	 Additionally,	 Facebook	 offers	 pay-per-action	 advertising,	 with	 the
allowable	actions	 including	“liking”	a	page,	 claiming	an	offer,	 and	 installing	a
mobile	app.

At	Google	and	Facebook,	as	well	as	other	companies	with	advertising,	the	price
of	an	ad	is	typically	determined	via	an	auction.

Cost-per-click	advertising	is	the	type	more	commonly	discussed.	The	price	you
pay	 for	 each	 click	 is	 called	 the	 cost-per-click	 (CPC).	 In	 the	 auction,	 you	 bid
based	on	the	CPC	you’re	willing	to	spend.

Another	key	metric	 is	 the	percent	of	 times	your	ad	 is	clicked,	called	 the	click-
through-rate	 (CTR).	To	calculate	how	much	you’d	pay	 to	have	your	ad	shown
one	 thousand	 times,	 a	 metric	 called	 CPM,	 you	 can	 multiply:	 CPC	 *	 CTR	 *
1,000.	 For	 example,	 if	 the	 cost-per-click	 (CPC)	 were	 $1.50,	 and	 the	 click-
through-rate	(CTR)	were	2%,	then	the	CPM	would	be	$30.

Generally,	 the	most	 an	 advertiser	would	be	willing	 to	pay	 for	 an	 ad	 (that	 is,	 a
click	on	an	ad)	is	the	expected	profit	from	that	click.	To	calculate	the	expected
profit	from	a	click,	you	want	to	know	what	percent	of	people	who	click	on	that
advertisement	will	 actually	make	 a	 purchase	 (conversion	 rate).	 Then,	multiply
conversion	rate	*	profit	per	conversion.

max	for	ad

=	expected	profit	per	click

=	conversion	rate	*	profit	per	conversion

	

If	you	were	 asked	 to	 calculate	how	much	you	would	pay	 for	 advertising	 for	 a
particular	product,	you	might	need	to	estimate	the	conversion	rate	and	the	profit
per	conversion.	Conversion	 rates	vary	 substantially	by	 industry	but	are	usually
between	2%	and	5%	on	Google	search	ads.

Example	Question
How	would	you	price	a	personalized	notebook?

Consider	the	following	response:

Since	 it’s	 personalized,	 I’ll	 assume	 this	 is	 a	 premium	 notebook,	 probably
leather	(or	faux-leather)	bound.

First	of	all,	let	me	think	about	who	the	market	is.	It	feels	like	the	market	for
this	 is	 probably	 consumers,	 but	 it’s	 possible	 there’s	 also	 some	market	 for
companies	as	a	promotional	item.	Both	would	be	good	avenues	to	discuss.

There	are	a	few	different	aspects	of	pricing	to	consider.
	

How	much	do	nice	moleskin-like	notebooks	cost?	 I’ve	bought	one	or	 two,
and	they’re	fairly	expensive—around	$15	-	$20.
How	much	 do	 other	 personalized	 products	 cost?	We’re	 competing	 in	 this
market	 too,	 so	 we	 need	 to	 be	 aware	 of	 this.	 Personalized	 products	 can
obviously	be	 very	 expensive,	 but	 you	 rarely	 see	personalized	products	 for
much	less	 than	$10.	When	I’ve	 looked	for	personalized	gifts,	 there	were	a
lot	around	$15	-	$50.

How	much	do	our	customers	generally	spend	on	gifts?	A	$20	gift	is	about
the	low-end	of	gift	buying,	at	least	for	professionals	(who	are	the	most	likely
people	to	buy	this	product).

What	sort	of	premium	will	people	pay	for	personalization?	We	could	survey
customers	 to	 guess	 at	 this,	 but	 that’s	 only	 somewhat	 accurate.	 A	 50%	 -
100%	premium	seems	about	right.

How	much	does	 it	 cost	 us	 to	make	 it?	 I	 have	 the	 least	 visibility	 into	 this.
However,	based	on	the	prices	of	other	products,	I’m	guessing	that	it	takes	at
least	 the	 cost	 of	 the	 notebook	 itself,	 plus	 the	 cost	 of	 personalization.	 If	 a
moleskin	 notebook	 is	 sold	 online	 for	 $20,	 then	 it’s	 probably	 sold	 to	 the

distributor	for	a	50%	or	so	markup.	The	distributor	also	probably	has	profit
margins	of	around	50%,	so	 let’s	 say	 that	a	moleskin	notebook	costs	$5	 to
make.	Personalization	probably	adds	another	few	dollars	on	top	of	that.

It	feels	as	though	we’re	narrowing	in	on	a	pricing	of	about	$35	for	a	nice,
personalized	notebook.

I	suspect	 there’s	a	market	 there	for	companies	as	a	promotional	 item	with
the	 company	 logo	 engraved.	 We	 can	 offer	 volume	 discounts	 on	 large
purchases	of	the	notebook.	This	would	incentivize	large	sales	and	offer	an
alternative	to	a	lot	of	less	classy	promotional	items.

Volume	 discounts	 wouldn’t	 drop	 the	 cost	 of	 production	 of	 the	 notebooks
(since	those	were	already	produced	at	a	discount),	but	it	probably	does	drop
the	price	of	engraving.	Our	costs	are	probably	around	$7,	so	 that	gives	a
lower	 bound	 on	 our	 price.	 For	 high	 volume	 sales,	 a	 price	 of	 $15	 seems
right;	that	gives	us	50%	profit	margins.	We	probably	don’t	want	to	go	much
below	this.

The	rest	of	the	prices	follow	roughly	from	there:
	

1	–	10	notebooks:	$35.	I	suspect	the	economies	of	scale	don’t	kick	in	until
after	this	point.
10	–	30	notebooks:	$30.
30	–	100	notebooks:	$20.
100+	notebooks:	$15.

Of	course,	we’d	want	 to	 tweak	 the	prices	based	on	data	and	actual	sales.
Since	it’s	an	actual	physical	product	without	ongoing	customers	to	support,
we	could	change	the	prices	periodically	without	people	getting	too	angry.”

This	candidate	has	used	a	variety	of	approaches	to	understand	what	a	reasonable
price	 is.	 She’s	 evaluated	 how	 willing	 a	 person	 would	 be	 to	 pay	 a	 particular
amount,	 based	 on	 the	 alternatives.	 In	 this	 case,	 alternatives	 include	 other
notebooks,	 other	 personalized	options,	 and	other	 gifts	 in	 general.	 She	has	 also
validated	this	price	against	an	estimation	of	the	costs.

Sample	Questions
	

1.	Describe	 a	 product	 or	 service	 you	 think	 takes	 an
interesting	approach	to	pricing.

2.	You	are	launching	a	new	music	service	where	you	pay
per	 time	you	play	 a	 song.	After	 a	 certain	 number	of
plays,	 it	 automatically	 purchases	 the	 song.	 How
would	you	price	this	service?

3.	 Imagine	United	Airlines	has	decided	to	launch	a	new
“standby	 membership	 pass,”	 which	 allows	 members
to	 take	 unlimited	 free	 flights	 on	 standby	 (only
boarding	 if	 there	 are	 empty	 seats).	 How	 would	 you
price	this	membership?

4.	A	 textbook	 publishing	 company	 has	 decided	 to	 sell
subscriptions	 to	 electronic	 versions	 of	 any	 of	 its
books.	 How	 would	 you	 determine	 the	 price	 of	 this
service?

5.	How	would	you	price	a	file	backup	service	targeted	at
enterprise	customers?

6.	 Two	 stores	 are	 located	 just	 a	 mile	 away	 from	 each
other.	 They	 sell	 the	 same	 product,	 but	 one	 sells	 the
product	 for	 25%	 more	 than	 the	 other.	 What	 factors
could	explain	why	the	prices	are	different?

7.	How	 would	 you	 price	 a	 cell	 phone	 service	 for	 the
elderly?

8.	You	 are	 launching	 a	 photo	 printing	 service	 that
automatically	 prints	 and	 mails	 someone’s	 favorite
pictures	to	them.	How	would	you	price	this	service?

9.	 Imagine	 you	 are	 launching	 a	 to-do	 list	 manager	 for

smartphones.	 How	would	 you	 determine	 the	 pricing
of	this	application?

10.	What	 analysis	 would	 you	 go	 through	 to	 determine
if/when	Amazon	should	change	the	price	of	Amazon
Prime?

	

Problem	Solving
Some	questions	are	left	wide	open:	There’s	a	problem.	What	would	you	do?

Tackling	 these	problems	starts	not	with	 the	solution	but	with	 the	problem.	You
have	to	isolate	the	precise	source	of	the	problem,	then	diagnose	the	cause,	then
solve	it.

In	some	cases,	you	might	be	ultimately	led	to	an	irreconcilable	conflict	between
two	paths.	For	example,	suppose	you	have	a	question	like,	“You	are	launching	a
photo	 sharing	 site	 and	 have	 experimented	 with	 a	 new	 interface	 for	 posting
pictures.	 It	 increases	 time	 spent	 on	 the	 website,	 but	 decreases	 the	 number	 of
photos	shared.	What	would	you	do?”

If	you	must	make	a	choice	between	two	paths,	then	let	the	company’s	goals	be
your	 guide.	The	 goals	will	 vary	 not	 only	 from	 company	 to	 company,	 but	 also
within	 the	 same	 product	 at	 different	 times.	 For	 example,	 a	 new	 startup	might
value	user	acquisition	the	most	at	first,	but	then	later	prioritize	revenue.

Depending	on	the	interviewer’s	goals,	she	might	conduct	this	as	a	back-and-forth
exercise,	where	you	ask	questions	 to	 clarify	 and	 she	provides	 answers.	Or	 she
might	want	to	see	your	instincts	in	general	and	to	see	how	you	would	solve	the
issue	in	the	real	world.

Breaking	 down	 the	 problem	 into	 components	 can	 help	 you	 isolate	 the	 causes.
Some	of	the	common	problems	and	their	causes	are:
	

Falling	profit	results	from	a	decline	in	revenue	or	an	increase	in	costs.
Falling	revenue	 results	 from	a	decrease	 in	 sales	volume	or	 a	 decrease	 in

price.	 This	 could	mean	 a	 shift	 in	 purchasing	 behavior	 across	 tiers	 of	 the
product.
Falling	sales	volume	results	from	a	decline	in	new	customers	coming	in	or
lower	retention	from	existing	customers.
Declining	new	customers	results	from	a	decline	in	traffic	or	in	conversion
rate.	Either	of	these	could	come	from	repeat	visitors	versus	new	visitors	on
a	website.
Increase	in	costs	can	be	caused	by	an	increase	in	fixed	costs	or	an	increase
in	marginal	costs.	These,	in	turn,	can	be	caused	by	suppliers	increasing	their
prices,	a	distributor	changing	their	profit	structure,	a	spike	in	the	number	of
returns,	or	a	variety	of	other	aspects.
Decline	 in	 traffic	 can	 be	 the	 result	 of	 a	 decline	 in	 the	 number	 of	 new
visitors,	 a	 decline	 in	 the	 number	 of	 returning	 visitors,	 or	 a	 decline	 in	 the
engagement	for	either	of	those	types	of	users.
Decline	 in	new	visitors	 can	 be	 the	 result	 of	 a	 decline	 in	 search	 traffic,	 a
decline	in	referral	traffic,	or	a	decline	in	direct	traffic.

A	question	like,	“How	would	you	figure	out	why	our	profit	has	declined?”	could
be	broken	down	from	profit,	 to	revenue,	 to	sales	volume,	 to	new	customers,	 to
conversion	rate.	The	key	is	to	isolate	the	problem.

Once	you’ve	figured	out	which	variable	 is	actually	changing,	you	then	need	 to
diagnose	the	problem.	This	could	be	almost	anything,	but	here	are	some	ideas	to
get	you	started:
	

Has	this	happened	in	all	regions?
How	 many	 product	 lines	 do	 we	 have?	 Has	 this	 happened	 in	 all	 our
products?
Have	competitors	had	similar	issues,	to	the	best	of	our	knowledge?
Have	other	related	products	experienced	the	same	effect?
Have	we	seen	any	seasonality?
Have	we	made	any	changes	to	our	product	line?
Have	new	competitors	entered	the	market?
If	we	separate	our	customers	by	new	versus	returning,	what	differences	do
we	see?
How	is	customer	retention?
What	have	customers	been	saying?	Have	we	been	getting	more	complaints
recently?

Do	we	notice	any	changes	in	referral	traffic?

Once	you’ve	diagnosed	 the	problem,	you	might	be	asked	 to	 resolve	 it.	Clarify
the	goals	before	you	go	on	to	doing	this.

Example	Question
You	are	working	for	Amazon	in	their	clothing	category	when	you	discover
that	 the	 sale	 of	 jeans	 has	 steadily	 declined	 during	 the	 past	 three	months.
How	would	you	figure	out	what	happened?

You	might	approach	this	question	as	follows:

Interesting.	Okay,	 so	 the	 sale	 volume	has	dropped.	 I’ll	 assume	 this	was	a
substantial	drop.	I	need	to	understand	more	about	what	happened.

The	 three	 month	 thing	 is	 particularly	 curious.	 It	 seems	 that	 something
happened	with	jeans,	with	clothing,	with	Amazon,	with	online	commerce,	or
just	with	time.

I	think	it’s	fair	to	rule	out	a	big	issue	with	online	commerce	or	Amazon.com.
Presumably,	if	those	had	experienced	major	drops,	we’d	know	about	it	and
have	 bigger	 issues	 to	 worry	 about.	 Likewise,	 let’s	 rule	 out	 a	 decline	 in
clothing	on	Amazon	since,	presumably,	we	wouldn’t	be	so	concerned	about
jeans	if	it	were	a	clothing-wide	issue.

The	 time	 issue	 is	 interesting.	 Comparing	 sales	 to	 three	 months	 ago	 isn’t
necessarily	a	good	idea.	Jeans	are	probably	not	sold	at	a	steady	rate	year
round.	 It’d	 be	 better	 to	 compare	 the	 sales	 to	 a	 year	 earlier	 to	 rule	 out
seasonality.	Let’s	assume,	though,	that	this	still	reveals	an	issue.

You’ve	also	said	it’s	a	steady	decline.	This	means	that	it’s	probably	not,	for
example,	 a	 single	 UI	 change	 that	 caused	 the	 issue.	 That	 would	 cause	 a
sudden	decline	instead.

At	 this	point,	 I’d	 like	 to	get	an	understanding	of	how	 the	sales	have	been
within	the	jeans	category.

	

Have	all	jeans	faced	a	decline?	Or	just	particular	brands?
Has	Zappos	experienced	a	similar	decline	with	jeans?	Since	Amazon	owns
Zappos,	we	could	likely	get	this	information.

Let’s	say	it	was	all	jeans	on	Amazon,	but	that	Zappos	did	not	experience	an
issue.	This	isolates	the	problem	to	something	specific	that	we	did.

Sales	volume	is	a	function	of	visitors	and	conversion	rate.	If	sales	dropped,
then	one	or	both	of	those	must	have	changed.

We	could	break	down	both	visitors	and	conversion	rate	by	 type	of	visitor:
Amazon	 search	 traffic	 (people	 searching	 on	 Amazon.com),	 browse	 traffic
(people	 browsing	 to	 get	 to	 the	 right	 category),	 external	 search	 traffic
(search	 engine	 traffic,	 such	 as	 from	 Google),	 and	 direct	 traffic	 (people
going	directly	to	a	particular	product).

Our	goal	 is	 to	 look	 for	which	of	 these	experienced	a	decline	either	 in	 the
number	 of	 visitors	 or	 in	 conversion	 rate.	 If,	 for	 example,	 external	 search
saw	a	drop	in	traffic,	then	we	could	investigate	what	changes	we	had	made
that	might	have	affected	our	pagerank.

If	we	don’t	see	a	difference	within	 these	 types	of	users,	 then	we’ll	want	 to
look	elsewhere	for	something	that	might	have	impacted	sales.	For	example,
it	might	be	that	the	price	of	jeans	increased	substantially.	It’s	also	possible
(though	hopefully	unlikely)	that	there	was	an	error	in	the	searching/buying
process	that	caused	a	decline.

This	is	the	basic	process	I’d	go	through.	Is	there	a	particular	aspect	you’d
like	me	to	drill	into	further?

This	 candidate	 has	 paid	 close	 attention	 to	 the	 wording	 of	 the	 question.	 It’s	 a
gradual	decline	across	a	type	of	product.	This	should	be	a	clue	to	what	might	be
causing	the	problem.

The	 candidate	 has	 also	 struck	 a	 good	 balance	 between	 outlining	 a	 general
approach	 to	 solve	 the	 problem	 and	 using	 appropriate	 instincts	 to	 guide	 the
direction	(e.g.,	it’s	unlikely	that	jeans	suddenly	stopped	selling	well).

Sample	Questions
	

1.	You	 notice	 the	 advertising	 revenue	 on	 your	 website
has	 dropped	 considerably.	How	would	 you	 go	 about

figuring	out	why	that	has	happened?
2.	You	 compare	 traffic	 from	 this	 month	 to	 last	 month
and	 discover	 that	 this	 month’s	 traffic	 is	 10%	 lower.
What	would	you	do?

3.	A	 magazine	 company	 comes	 to	 you	 for	 help.	 They
understand	 publishing	 is	 a	 troubled	 industry.
However,	 their	 sales	 have	 declined	 10%	while	 those
of	 their	 closest	 competitor	 have	 declined	 just	 over
5%.	How	would	you	handle	this	issue?

4.	A	particular	page	on	Facebook	results	in	an	error	10%
of	the	time.	What	could	cause	this?

5.	Your	 VP	 demands	 that	 you	 double	 revenue	 within
four	years.	How	would	you	go	about	creating	a	plan
to	do	this?

6.	You	own	a	small	ecommerce	website	that	specializes
in	selling	sporting	goods.	Last	year	you	made	almost
$200k	 in	 profit.	 This	 year	 it	 was	 just	 $80k.	 What
could	have	happened,	and	how	would	you	figure	out
the	cause?

7.	You	 own	 a	 website	 with	 three	 tiers	 of	 pricing:	 free,
standard,	and	premium.	What	would	you	do	if	you	see
that	the	sales	of	the	premium	product	have	fallen	but
those	of	the	standard	product	have	increased?

8.	 Two	children	are	running	lemonade	stands,	just	a	few
blocks	away	 from	each	other.	What	might	cause	one
child	to	do	much	better	than	the	other?

9.	You	 are	 about	 to	 launch	 a	major	 change	 to	 the	 user

interface	 of	 your	 company’s	 website.	 What	 sort	 of
metrics	 would	 you	want	 to	monitor	 to	 notify	 you	 if
there’s	a	problem?

10.	You	 notice	 that	 the	 Google	 AdWords	 revenue	 for	 a
particular	word	 has	 dropped	 in	 Spain	 for	 the	 last	 30
days.	This	 is	 an	 important	one,	 so	Google	has	asked
you	to	figure	out	what	has	happened.	How	would	you
tackle	this?

1	 “Startup	 Metrics	 for	 Pirates.”	 Dave	 McClure.	 8	 August,	 2007.
http://www.slideshare.net/dmc500hats/startup-metrics-for-pirates-long-version

2	 “Launching	 a	 Startup?	 Plan	 Your	 Marketing	 Around	 These	 3	 Phases.”
Dunford,	April.	22	July	2013.	From	http://www.betakit.com/launching-a-startup-
plan-your-marketing-around-these-3-phases/

	Coding	Questions
Chapter	16

Thought	you’d	get	away	without	having	to	code?	Not	so	fast.

Many	 companies,	 including	 Google,	 Amazon,	 and	 Microsoft,	 sometimes	 ask
their	PM	candidates	coding	and	algorithm	questions.	These	questions	can	range
from	 straightforward	 coding	 questions	 to	 more	 complex	 algorithm	 questions
(which	may	or	may	not	be	followed	up	with	a	request	to	code).

The	good	news	is	the	expectations	are	generally	lower	than	they	would	be	for	a
developer.	Many,	but	not	all,	interviewers	will	be	satisfied	with	pseudocode.

Note:	 Programming	 code	 can	 be	 difficult	 to	 read	 on	 a	 Kindle's	 narrow
screen,	 since	 it	 causes	 line	 breaks	 in	 the	 wrong	 places.	 If	 your	 Kindle
support	landscape	mode,	you	might	want	to	try	that.	(This	is	supported	with
the	Kindle	Paperwhite.)	Otherwise,	try	reading	it	on	the	desktop	app	(resize
the	application	to	have	a	larger	page	size	and	increase	the	words	per	line).

Who	Needs	To	Code
Generally,	the	more	recently	you’ve	coded,	the	more	likely	you	are	to	be	asked
coding	 questions.	 Companies	 will	 often	 expect	 recent	 computer	 science
graduates	and	current	developers	to	code	during	their	interviews.

Never	 coded	before?	You’re	probably	off	 the	hook	 for	 the	 coding	 aspects,	 but
you	still	might	be	expected	to	explain	an	approach	to	solve	a	problem.	It’s	worth
reading	 this	 section,	 just	 in	 case.	 Some	 of	 the	 terms	 might	 be	 beyond	 your
knowledge,	 but	 you’ll	 still	 benefit	 from	 understanding	 how	 to	 approach	 these
questions.

What	You	Need	To	Know
If	 you’re	 a	 recent	 graduate	 from	 a	 strong	 computer	 science	 program,	 you
probably	 know	 most	 of	 what	 you	 need	 to	 know.	 Focus	 more	 on	 practicing
interview	questions	than	relearning	actual	knowledge,	unless	you	discover	major
gaps.

Here’s	the	quick	list	of	what	you	should	know.

Note:	we’re	 jumping	 right	 into	big	O	notation	 to	explain	 runtimes.	 If	you
don’t	know	big	O	or	you	are	very	vague	on	its	meaning,	you	might	want	to
jump	ahead	to	read	about	it.

Data	Structures
As	its	name	suggests,	a	data	structure	is	a	structure	for	holding	data.	Depending
on	what	you’re	optimizing	for,	there	are	many	different	approaches	to	holding	or
organizing	your	data.

In	 roughly	 descending	order	 of	 importance	 for	 an	 interview,	 the	 common	data
structures	are:

Arrays
An	array	is	the	most	straightforward	way	to	hold	a	set	of	objects.	It	stores	items
in	a	simple	list	of	objects.	Looking	up	an	object	is	fast	if	you	know	the	index,	but
slow	otherwise.	 For	 example,	 it’s	 fast	 to	 retrieve	 the	 12th	 person	 in	 a	 list,	 but
slow	 to	 find	 all	 people	 named	 “Alex”	 (since	 you	 have	 to	 look	 through	 all
people).

In	most	 languages,	 an	 array	 cannot	 “grow”	 in	 length	 after	 being	 created.	You
must	specify	the	length	of	the	array	upfront	and	it	cannot	be	changed	after	that.

Good	Practice	Problems:
16.1	 Given	 a	 sorted	 array	 of	 positive	 integers	 with	 an
empty	spot	(zero)	at	 the	end,	 insert	an	element	 in	sorted
order.

jump	to	solution

16.2	Reverse	 the	order	of	 elements	 in	 an	 array	 (without
creating	a	new	array).

jump	to	solution
Hashtables
A	hashtable	(sometimes	called	a	“dictionary”	or	a	“hashmap”)	allows	you	to	map
a	“key”	to	a	“value.”	This	key	is	often	a	number	or	string,	and	the	value	can	be
any	type	of	object.

This	is	a	very	useful	data	structure	because	it	allows	for	very	fast	lookup.	For	the
purposes	of	an	interview,	we	generally	assume	that	a	hashtable	is	O(1)	(constant
time,	 regardless	 of	 the	 amount	 of	 data)	 to	 insert	 and	 look	 up	 elements,	 even
though	 this	 isn’t	100	percent	 true.	A	poor	 implementation	of	a	hashtable	could
have	an	O(N)	look-up	time.

You	might	use	 it	 to	map	from	a	person’s	ID	number	 to	some	object	with	other
information	about	them.

Good	Practice	Problems
16.3	Given	two	lists	(A	and	B)	of	unique	strings,	write	a
program	to	determine	if	A	is	a	subset	of	B.	That	is,	check
if	all	the	elements	from	A	are	contained	in	B.

jump	to	solution
16.4	You	are	given	a	two-dimensional	array	of	sales	data
where	 the	 first	 column	 is	 a	 product	 ID	 and	 the	 second
column	is	the	quantity.	Write	a	function	to	take	this	list	of
data	 and	 return	 a	 new	 two-dimensional	 array	 with	 the
total	sales	for	each	product	ID.

Example:	
211,4	

262,3	

211,5	

216,6

Output:	
211,9	

262,3	

216,6

jump	to	solution

Trees	and	Graphs
A	graph	is	a	set	of	nodes	which	are	connected	through	edges.	Not	all	the	nodes
need	to	be	connected—you	could	have	two	entirely	separate	subgraphs—and	the
edges	can	be	either	“directed”	or	“undirected.”	A	directed	edge	can	be	thought	of
as	a	one-way	street,	with	an	undirected	edge	being	like	a	two-way	street.	If	the
graph	is	directed,	an	edge	from	v	to	w	is	not	an	edge	from	w	to	v.	Therefore,	you
might	be	able	to	“drive”	from	node	n	to	node	m,	but	not	the	other	way	around.

A	tree	is	a	type	of	graph	in	which	any	two	nodes	are	connected	through	one,	and
only	one,	path.	A	tree	will	not	have	any	cycles	since	there	can	only	be	one	path
between	any	two	nodes.

A	tree	can	come	in	many	forms,	but	by	far	the	most	common	is	the	binary	tree.
A	binary	tree	is	a	tree	where	each	node	has	only	two	child	nodes.	We	call	these
nodes	 the	 left	 node	 and	 the	 right	 node.	As	with	 all	 trees,	 there	 cannot	 be	 any
“cycles”	 on	 the	 tree	 (no	 paths	 from	 a	 node	 back	 to	 itself).	 Because	 of	 these
restrictions,	a	binary	tree	can	be	represented	in	a	strictly	hierarchical	fashion	like
this:

Commonly,	we	work	with	binary	search	trees.	A	binary	search	tree	is	a	tree	in
which	all	nodes	in	the	left	subtree	are	less	than	the	node’s	value,	which	is	in	turn
less	 than	 the	 values	 of	 the	 all	 nodes	 in	 the	 right	 subtree.	 The	 above	 tree	 is	 a
binary	search	tree.

If	 a	 binary	 search	 tree	 is	 balanced	 (and	 usually	we	 deal	with	 balanced	 binary
search	 trees),	 inserting	 an	 element,	 as	well	 as	 finding	 an	 element,	 is	O(log	 n)
where	n	is	the	number	of	nodes.

Good	Practice	Problems
16.5	Insert	an	element	into	a	binary	search	tree	(in	order).
You	 may	 assume	 that	 the	 binary	 search	 tree	 contains
integers.

jump	to	solution
16.6	Given	 a	 binary	 search	 tree	which	 contains	 integers
as	values,	calculate	the	sum	of	all	the	numbers.

jump	to	solution

Linked	Lists
Like	 a	 binary	 tree,	 a	 linked	 list	 is	 a	 data	 structure	 composed	 of	 nodes,	where
each	node	has	a	pointer	to	other	nodes.	In	a	singly-linked	list,	the	node	only	has
a	 pointer	 to	 its	 next	 node.	 In	 a	 doubly-linked	 list,	 the	 node	 has	 pointers	 to	 its
previous	node	and	 its	next	node.	 It	 is	generally	considered	highly	problematic,
and	possibly	a	violation	of	the	linked	list	structure,	if	the	list	has	a	cycle.

Inserting	a	node	into	the	front	of	a	linked	list	can	be	done	in	O(1)	time.	However,
if	 the	 list	 is	 sorted	 and	you	wish	 to	 insert	 the	node	 in	order,	 it	will	 take	O(N)
time,	where	N	 is	 the	number	of	nodes.	This	 is	because	you	must	 first	 find	 the
right	spot,	and	this	requires	searching	through	the	whole	list.

Finding	a	node	in	a	linked	list	is	O(N),	whether	or	not	the	list	is	sorted.

Good	Practice	Problems
16.7	 Insert	 a	 node	 into	 a	 sorted	 linked	 list	 (in	 order).
(Don’t	forget	about	what	happens	when	the	new	element
is	at	the	start	or	end!)

jump	to	solution

16.8	“Sort”	a	linked	list	that	contains	just	0s	and	1s.	That
is,	modify	the	list	such	that	all	0s	come	before	all	1s.

jump	to	solution
Stack
A	stack	is	a	data	structure	which	defines	a	precise	order	for	how	elements	must
be	inserted	and	removed.	When	an	element	is	added,	or	“pushed,”	it	is	inserted

on	the	top	of	the	stack.	When	an	element	is	removed,	it	is	“popped”	from	the	top
of	the	stack.

A	stack	is	said	to	be	a	LIFO	(last-in-first-out)	data	structure,	since	the	last	(most
recent)	element	added	is	the	first	one	to	be	removed.

In	this	way,	it	acts	like	a	stack	of	plates	in	real	life.	When	you	add	a	plate	onto	a
stack	 of	 plates,	 you	 add	 it	 on	 the	 top.	When	 you	 remove	 a	 plate,	 you	 always
remove	from	the	top.

Inserting	 and	 removing	 from	 a	 stack	 is	 O(1).	 Finding	 an	 element	 with	 a
particular	 value	 is	 not	 usually	 done,	 as	 it	 would	 require	 removing	 all	 the
elements,	 one	 by	 one.	 A	 stack	 is	 not	 a	 good	 data	 structure	 choice	 if	 this	 is
something	you	think	you	will	need	to	do.

Good	Practice	Problems
16.9	Write	 a	 function	which	 takes	 a	 stack	 as	 input	 and
returns	a	new	stack	which	has	the	elements	reversed.

jump	to	solution
16.10	 Write	 a	 function	 which	 removes	 all	 the	 even
numbers	 from	 a	 stack.	 You	 should	 return	 the	 original
stack,	not	a	new	one.

jump	to	solution

Queue
A	queue	is	essentially	the	opposite	of	a	stack.	Rather	than	removing	the	newest
item	with	a	LIFO	(last-in-first-out)	principle,	it	removes	the	oldest	item.	It	is	said
to	be	“FIFO”	(first-in-first-out),	since	the	first	item	you	add	will	be	the	first	one
you	remove.

It	acts	like	a	queue	(or	line)	in	real	life.	When	people	are	in	a	queue	for	movie
tickets,	the	first	person	to	get	in	line	is	the	first	person	who	will	be	served.	This
is	of	course	how	the	data	structure	gets	its	name.

Inserting	(or	“enqueuing”)	and	removing	(or	“dequeuing”)	from	a	queue	is	O(1).
As	in	a	stack,	finding	an	element	would	not	ordinarily	be	implemented.

Good	Practice	Problems

16.11	 Write	 a	 function	 to	 check	 if	 two	 queues	 are
identical	 (same	 values	 in	 the	 same	 order).	 It’s	 okay	 to
modify/destroy	the	two	queues.

jump	to	solution
16.12	Write	a	function	to	remove	the	13th	element	from	a
queue	(but	keep	all	the	other	elements	in	place	and	in	the
same	order).

jump	to	solution

Algorithms
If	you	have	a	computer	science	degree,	you	know	we	could	easily	fill	hundreds
of	pages	with	advanced	algorithms.	We	won’t	 though,	because	 these	 topics	are
rarely	asked	 in	 interviews.	Even	developers	are	unlikely	 to	be	asked	questions
about,	say,	Dijkstra’s	Algorithm,	since	interviewers	care	much	more	about	your
ability	to	create	a	new	algorithm	than	memorizing	an	existing	one.

Still,	there	are	a	few	fundamental	algorithms	that	are	considered	“fair	game”	for
developers,	and	even	for	PMs.	These	come	up	frequently	enough	that	it’s	worth
your	time	to	remember	them.

Sorting
The	two	most	common	good	ways	to	sort	an	array	are	quick	sort	and	merge	sort.
The	 others—bubble	 sort,	 insertion	 sort,	 radix	 sort,	 etc.—are	 less	 efficient	 in
general	or	only	work	with	specific	assumptions.
	

Merge	Sort	operates	by	sorting	the	left	and	right	half	of	the	array,	and	then
merging	the	arrays.	How	does	it	sort	the	left	and	right	halves?	Through	the
merge	sort	algorithm	(recursively).	It	takes	the	left	half,	divides	that	in	half,
sorts	each	part,	and	then	merges	those	together.	It	then	does	the	same	on	the
right	half.	Merge	Sort	 is	O(n	 log(n))	 in	 the	average	case	and	 in	 the	worst
case.
Quick	 Sort	 sorts	 data	 by	 choosing	 a	 random	 “pivot”	 element	 and
rearranging	the	elements	in	the	array	based	on	whether	they’re	less	than	or
greater	 than	 the	pivot.	Next,	 it	 tackles	 the	elements	on	 the	 left	 side	of	 the
pivot	(all	of	which	are	less	than	or	equal	to	the	pivot)	and	the	right	half	of

the	 pivot	 (all	 of	 which	 are	 greater	 than	 the	 pivot).	 It	 applies	 the	 same
strategy	to	each	side:	pick	a	pivot,	rearrange,	and	then	pick	a	new	pivot	on
each	 side.	Quick	Sort	 is	O(n	 log(n))	 in	 the	 average	case,	but	O(n2)	 in	 the
worst	case.	The	worst	case	will	happen	if	a	bad	“pivot”	(a	very	low	or	very
high	element)	is	continuously	picked.

Note	that	both	algorithms	have	an	approach	of	“divide	in	two	parts	and	then	re-
apply	algorithm.”

The	 other	 sorting	 algorithms	 are	 the	 naive	 implementations	 that	 you	might	 do
when,	say,	you’re	trying	to	sort	a	stack	of	papers.
	

Insertion	 Sort	 maintains	 a	 sorted	 sublist	 of	 elements	 (initially	 0)	 at	 the
beginning	of	the	array.	It	then	looks	at	the	beginning	of	the	unsorted	sublist.
If	this	element	is	bigger	than	the	last	element	in	the	sorted	sublist,	it	leaves
it	in	place	and	just	grows	the	sorted	portion	(since	the	element	is	already	in
the	 correct	 order).	 If	 it’s	 smaller,	 then	 it	moves	 it	 into	place	 in	 the	 sorted
sublist.	The	unsorted	portion	shrinks	by	one	each	time.	The	algorithm	then
repeats	this	step	for	each	element	in	the	unsorted	portion,	until	the	array	is
fully	sorted.	Insertion	Sort	takes	O(N)	time	in	the	best	case	(if	the	array	is
already	sorted),	but	O(N2)	in	the	expected	and	worst	case.
Bubble	Sort	is	a	pretty	straightforward	algorithm.	It	iterates	through	the	list
repeatedly,	swapping	each	pair	of	elements	that	are	out	of	order.	Once	a	full
iteration	happens	without	any	swaps,	the	array	is	sorted.	This	takes	O(N)	in
the	best	case	(if	 the	array	 is	 totally	sorted)	and	O(N2)	 in	 the	expected	and
worst	case.

It’s	unlikely	that	you’ll	be	asked	to	implement	one	of	these	algorithms	by	name,
but	 it’s	 still	useful	 to	understand	how	one	might	 sort	data.	PMs	are	 sometimes
asked	 to	 sort	 a	 list	 of	 data.	 Those	 with	 a	 recent	 CS	 degree	 would	 likely	 be
expected	to	implement	one	of	the	more	optimal	algorithms,	while	those	without
a	CS	degree	may	get	away	with	the	more	naive	approaches.

Good	Practice	Problems
16.13	Given	two	sorted	arrays,	write	a	function	to	merge
them	in	sorted	order	into	a	new	array.

jump	to	solution

16.14	Implement	insertion	sort.
jump	to	solution

Binary	Search
Binary	search	 is	an	algorithm	for	 locating	a	value	 in	a	 sorted	 list	 (typically	an
array).	In	binary	search,	we	compare	the	value	to	the	midpoint	of	our	list.	Since
our	list	is	sorted,	we	can	then	determine	whether	the	value	should	be	located	on
the	left	side	or	the	right	side	of	this	comparison	element.	We	then	search	the	left
or	 right	 side,	 repeating	 this	 operation:	 compare	 to	midpoint	 of	 the	 sublist,	 and
then	search	the	left	or	right	half	of	that	sublist.

Because	we’re	repeatedly	dividing	the	data	set	in	half,	the	algorithm	takes	O(log
n)	time	in	the	average	and	worst	case.

We	often	perform	binary	search	in	real	life	without	realizing	it.	Imagine	you	had
a	stack	of	 student	exams	sorted	by	 first	name.	 If	you	had	a	name	 like	“Peter,”
would	you	search	starting	 from	 the	 top	of	 the	stack?	Probably	not.	You	would
hop	about	halfway	through,	and	then	compare.	If	you	see	“Mary,”	you	know	to
keep	 going.	 You	 could	 then	 just	 search	 that	 second	 half	 of	 exams	 by
continuously	dividing	the	stack	in	half.

Binary	 search	 is	 a	 popular	 algorithm	 and	 therefore	 an	 important	 concept	 to
understand.	Many	algorithms	are	based	on	binary	search.

Good	Practice	Problems
16.15	 Implement	 binary	 search.	 That	 is,	 given	 a	 sorted
array	 of	 integers	 and	 a	 value,	 find	 the	 location	 of	 that
value.

jump	to	solution
16.16	You	 are	 given	 an	 integer	 array	which	was	 sorted,
but	then	rotated.	It	contains	all	distinct	elements.	Find	the
minimum	value.	For	example,	the	array	might	be	6,	8,	9,
11,	15,	20,	3,	4,	5.	The	minimum	value	would	obviously
be	3.

jump	to	solution

Graph	Search
There	are	two	common	algorithms	for	searching	a	graph:	depth-first	search	and
breadth-first	search.

In	depth-first	search,	we	will	completely	search	a	node’s	first	child	before	going
on	to	the	second	child,	third	child,	and	so	on.	For	example,	imagine	a	node	with
two	children,	A	and	B.	If	we	are	searching	for	a	value	v,	we	completely	search	A
(and	 the	nodes	connected	 to	A)	before	we	check	out	B.	 It’s	 called	“depth-first
search”	for	this	reason;	we	go	deep	before	we	go	wide.

In	breadth-first	search,	we	go	wide	before	deep.	If	we	start	from	an	initial	node
R,	we	first	check	R	and	all	the	nodes	immediately	connected	to	R	(let’s	call	these
“children”).	 Then,	 we	 expand	 our	 search	 outwards,	 searching	 all	 the	 nodes
connected	to	R’s	children.	We	repeat	this	process	until	we	find	the	value	or	until
we’ve	completed	searching	this	entire	[sub-]graph.

In	both	algorithms,	we	need	to	be	careful	that	we	don’t	wind	up	going	in	circles
forever.	Therefore,	if	there	are	cycles	in	the	graph—that	is,	if	there	is	more	than
one	path	 to	get	 from	one	node	 to	another—then	we	need	 to	mark	 the	nodes	as
“already	visited”	to	ensure	that	we	don’t	repeatedly	search	the	same	node.	This
will	not	be	an	issue	for	trees,	as	there	are	no	cycles	in	a	tree.

Note	that	a	graph	can	have	two	completely	separate	parts	that	are	not	connected.
If	this	is	the	case,	we	need	to	perform	our	search	algorithm	on	each	component
to	ensure	that	we	find	the	item	we’re	looking	for.

Good	Practice	Problems
16.17	Using	depth-first	search,	check	if	a	tree	contains	a
value.

jump	to	solution
16.18	Write	the	pseudocode	for	breadth-first	search	on	a
binary	tree.	Try	to	be	as	detailed	as	possible.

jump	to	solution
Concepts
Big	O	Notation
Big	O	notation	is	a	way	to	express	the	efficiency	of	an	algorithm.	If	you’re	going

to	be	working	with	code,	 it	 is	 important	 that	you	understand	big	O.	 It	 is,	quite
literally,	the	language	we	use	to	express	efficiency.

Big	O	will	allow	you	understand	the	tradeoff	of	different	features.	For	example,
if	 you	were	working	 on	 a	 social	 networking	website	 and	 you	wanted	 to	 show
how	 many	 friends	 two	 people	 have	 in	 common,	 you	 might	 suggest	 looking
through	 each	 of	my	 friends	 to	 see	 if	 the	 friend	 is	 in	 your	 list	 of	 friends.	 This
probably	takes	O(N2)	time,	where	N	is	the	average	number	of	friends	a	user	has.
That	 is,	 if	 you	were	 to	 time	how	 long	 this	 approach	 took	as	 friends	 lists	grew
bigger	and	bigger,	you	would	see	that	the	graph	of	runtimes	looks	something	like
the	f(x)	=	x2	graph.	This	is	going	to	be	very	costly.	You’ll	need	to	come	up	with	a
better	implementation.

f(x)	=	x2

Big	 O	 allows	 you	 to	 state	 this	 sort	 of	 information	 clearly	 and	 succinctly.	 It
expresses	how	the	execution	time	of	a	program	scales	with	the	input	data.	That
is,	as	the	input	gets	bigger,	how	much	longer	will	the	program	take?	Just	a	little
bit	longer?	A	lot	longer?	Will	the	time	increase,	say,	exponentially	with	the	size
of	input	(yikes!)?

Suppose	you	have	a	function	foo	which	does	some	processing	on	an	array	of	size

N.	If	foo	takes	O(N)	time,	then,	as	the	array	grows	(that	is,	as	N	increases),	the
number	of	seconds	foo	takes	will	also	increase	in	some	sort	of	linear	fashion.

Carrier	Pigeons	vs.	The	Internet
This	is	a	true	story.

In	 2009,	 a	 South	 African	 company	 named	 The	 Unlimited	 grew	 frustrated	 by
their	ISP’s	slow	internet	and	made	news	by	comically	showing	just	how	bad	it
was.	They	“raced”	a	carrier	pigeon	against	their	ISP.	The	pigeon	had	a	USB	stick
affixed	to	its	 leg	and	was	taught	 to	fly	to	an	office	50	miles	away.	Meanwhile,
the	company	transferred	this	same	data	over	the	internet	to	this	same	office.	The
pigeon	won—by	a	long	shot.

What	a	joke	this	ISP	was,	right?	A	bird	could	transfer	data	faster	than	them.	A
bird!

Their	 internet	may	or	may	not	have	been	slow,	but	 this	experiment	doesn’t	say
much.	No	matter	how	fast	or	slow	your	internet	is,	you	can	select	an	amount	of
data	that	will	allow	the	internet	or	a	pigeon	to	win.

Here’s	why:

How	long	does	it	take	a	pigeon	to	fly	50	miles	with	a	10	GB	USB	stick	attached
to	its	leg?	Let’s	say	it	takes	about	3	hours.	Great.

Now,	how	long	does	it	take	to	transfer	10	GB	on	the	internet?	Let’s	say	you	have
pretty	 fast	 internet,	 and	10	GB	only	 takes	30	minutes.	Okay,	 then	 transfer	100
GB	and	you	know	it	will	take	more	than	3	hours.

How	long	does	it	take	that	same	pigeon	to	“transfer”	100	GB?	Still	3	hours.	The
pigeon’s	 transfer	 speed	 doesn’t	 depend	on	 the	 amount	 of	 data.	USB	 sticks	 are
pretty	 light	but	 can	 fit	 a	 ton	of	data.	 (This	 is	 a	bit	of	 an	oversimplification,	of
course.	 With	 enough	 data,	 you	 would	 need	 many	 USB	 sticks	 and	 eventually
many	pigeons.)

So,	just	like	that,	the	pigeon	beat	the	internet!

The	pigeon’s	transfer	time	is	constant.	The	internet’s	transfer	time	is	proportional
to	the	amount	of	data:	twice	the	data	will	take	about	twice	as	much	time.

In	big	O	time,	we’d	say	that	the	pigeon	takes	O(1)	time.	This	means	that	the	time
it	 takes	 to	 transfer	N	gigabytes	varies	proportionally	with	1.	That	 is,	 it	doesn’t
vary	at	all.

The	internet’s	transfer	speed	is	O(N).	This	means	that	the	amount	of	time	it	takes
varies	proportionally	with	N.

Big	 O	 offers	 an	 equation	 to	 describe	 how	 the	 time	 of	 a	 procedure	 changes
relative	to	its	input.	It	describes	the	trend.	It	does	not	define	exactly	how	long	it
takes,	as	procedures	with	larger	big	O	time	could	be	faster	on	specific	inputs.

Real-Life	Big	O
Many	“operations”	in	real	life	are	O(N).	Driving,	for	example,	can	be	thought	of
as	 O(N).	 As	 the	 distance	N	 increases,	 driving	 time	 also	 increases	 in	 a	 linear
fashion.

What	might	not	be	O(N)?

Imagine	 we	 invited	 a	 bunch	 of	 people	 (including	 you)	 to	 a	 dinner	 party.	 If	 I
invited	twice	as	many	people	to	the	party,	you	will	have	to	shake	twice	as	many
hands.	The	 time	 it	will	 take	you	 to	shake	everyone’s	hand	can	be	expressed	as
O(N).	If	I	double	the	amount	of	guests,	it	will	take	you	twice	as	long.	This	is	a
linear,	or	O(N),	increase.

Now,	let’s	suppose	everyone	wants	to	shake	hands,	but	for	some	strange	reason
only	one	pair	of	people	can	shake	hands	at	a	 time.	As	N	 increases,	how	much
longer	will	this	meet	and	greet	take?	Well,	your	work	will	take	O(N)	time—but
so	will	 everyone	else’s.	The	 time	 it	 takes	 increases	proportionally	with	O(N2),
since	there	are	roughly	N2	pairs.

Dropping	Constants
If	 you	 are	 paying	 close	 attention,	 you	 might	 say,	 “But	 wait!	 There	 aren’t	 N2

pairs.	People	aren’t	shaking	hands	with	themselves,	and	you’re	double	counting
every	pair.	There	are	really	N(N-1)/2	pairs.	So	we	should	say	O(N(N-1)/2).”

You’re	absolutely	right.	There	are	N(N-1)/2	pairs	(which	is	.5*N2	-	.5N),	but	we
still	say	that	this	is	O(N2).

Big	O	is	very	hand-wavey,	wishy-washy.	We’re	trying	to	express	how	the	time
changes	in	rough	terms,	not	offer	a	precise	calculation	for	the	number	of	seconds

something	takes.

As	 a	 result,	we	drop	 constant	 factors,	 so	O(2N)	 is	 the	 same	as	O(N).	We	also
drop	 the	 addition	 or	 subtraction	 of	 constants,	 so	O(N	 -	 5)	 becomes	O(N).	 Put
together,	 these	 two	 factors	 mean	 that	 O(N2	 +	 N)	 should	 be	 written	 as	 O(N2).
Think	about	it:	if	O(N2)	and	O(N2	+	N2)	are	the	same,	then	O(N2	+	N),	which	is
between	those	two,	should	be	treated	as	the	same.

This	 is	 a	 very	 important	 thing	 to	 understand.	 You	 should	 never	 express	 an
algorithm	 as	 “O(2N).”	 This	 is	 not	 a	 “more	 precise”	 or	 “better”	 answer	 than
O(N);	 it’s	 only	 a	 confusing	 one.	 A	 so-called	 “O(2N)”	 algorithm	 is	 O(N)	 and
should	be	expressed	as	such.

Which	of	the	below	expressions	are	equivalent	to	O(N3)?

O(3N3)

O(N(N2
	+	3))

O(N3
	-	2)

O(N3
	+	N	lg	N)

O(N3
	-	N2

	+	N)

O((N2
	+	3)(N+1))

All	of	them!

Drop	your	constants	and	just	keep	the	most	important	term.

Multiple	Variables
Back	 to	 the	handshaking	example.	Suppose	we	 invited	men	and	women	 to	our
dinner	party.	All	 the	men	already	know	each	other	 and	 all	 the	women	already
know	 each	 other.	 Therefore,	 people	 will	 only	 shake	 hands	 with	 the	 opposite
gender.

Assuming	that	we’re	still	in	bizarro	land	where	only	one	pair	can	shake	hands	at
a	time,	how	would	you	express	how	long	this	takes?

Don’t	say	O(N2).	Suppose	we	have	100	men	and	1	woman.	Adding	one	man	will
add	one	handshake,	but	adding	one	woman	will	add	100	handshakes.	The	time	it
takes	does	not	actually	increase	proportional	to	the	number	of	people	squared.

These	 are	 different	 “variables,”	 and	 it	 matters	 which	 one	 we	 increase.	 The
correct	 way	 to	 express	 this	 is	 with	 two	 variables.	 If	 there	 are	M	 men	 and	W
women,	then	our	meet	and	greet	takes	O(M*W)	time.

What	 if	 the	women	 all	 knew	each	other,	 but	 the	men	knew	no	one	 at	 all?	We
would	then	say	 that	 the	meet	and	greet	 is	O(M2	+	M*W).	Note	 that	we	do	not
drop	that	extra	M*W	term;	it’s	a	different	variable,	and	it	matters.

Why	This	Matters	(And	Why	It	Doesn’t)
Let’s	suppose	that	we	have	two	functions	which	process	some	data.	The	function
foo	takes	O(N)	time	and	the	function	bar	takes	O(N2)	time.	On	a	given	data	set
(for	example,	a	specific	list	of	people),	which	one	will	be	faster?

We	don’t	know,	actually.

The	runtime	of	foo	will	 increase	proportionally	to	O(N)	and	the	runtime	of	bar
will	 increase	 proportionally	 to	 O(N2).	 So,	 eventually,	 the	 O(N2)	 line	 should
exceed	the	O(N)	time.

However,	we	can’t	make	any	determinations	on	a	particular	data	set.	The	O(N2)
could	 be	 faster	 on	 smaller	 data	 sets;	 it	might	 not	 have	 yet	 exceeded	 the	O(N)
line.	Plus,	even	on	very	large	data—after	this	“overtaking”	occurs—there	could
be	 exceptions.	 Maybe,	 when	 N	 is	 divisible	 by	 1000,	 the	 bar	 code	 will	 hit	 a
special	case	and	suddenly	operate	very	quickly.	We	just	don’t	know.

This	doesn’t	make	big	O	useless;	we	just	have	to	be	very	careful	about	how	we
apply	it.

Big	O	allows	us	to	say	things	like,	“In	general,	as	our	data	set	grows	in	size,	this
algorithm	will	be	much,	much	faster	than	this	other	one.”	It	also	allows	us	to	say,

“You	 want	 to	 run	 this	 O(N2)	 algorithm,	 and	 N	 is	 the	 number	 of	 files	 on	 our
network?	Sorry,	that’s	just	not	going	to	work.”	That	matters—a	lot.

Moreover,	it	gives	us	a	language	for	expressing	efficiency	that	isn’t	reliant	on	the
system	architecture	or	the	technologies	used.	Without	big	O,	we’d	likely	have	to
discuss	efficiency	in	terms	of	seconds,	which	has	little	meaning	when	you	are	on
a	different	system.

Logs	and	Big	O
You	 might	 notice,	 as	 you’re	 doing	 problems,	 that	 we	 (and	 others)	 describe
problems	as	O(log(N))	or	O(lg(N)),	but	we	aren’t	particularly	concerned	about
specifying	 whether	 we	 mean	 log2(N)	 or	 log10(N).	 That’s	 because	 it	 doesn’t
matter.	 The	 difference	 between	 one	 log	 and	 another	 is	 just	 a	 constant	 factor:
logb(n)	 equals	 logk(n)	 /	 logk(b).	 Since	 big	 O	 time	 doesn’t	 care	 about	 constant
factors,	we	don’t	need	to	care	about	what	our	log	base	is.

Big	O	Space	and	More
The	 concept	 of	 big	O	 can	 be	 used	 for	much	more	 than	 runtime.	 In	 fact,	 very
commonly	it	is	used	to	describe	how	much	memory	an	algorithm	uses.

For	 example,	 suppose	 I	 have	 an	 algorithm	 that	 creates	 and	 initializes	 an	NxN
matrix:
	

1.	 int[][]	a	=	new	int[N][N];	/*	NxN	matrix	*/

2.	 for	i	from	0	to	N	{

3.	 			for	j	from	0	to	N	{

4.	 					a[i][j]	=	i	+	j

5.	 			}

6.	 }

This	algorithm	takes	O(N2)	time	and	O(N2)	space.

Note:	 If	 you’ve	 taken	 an	 algorithms	 class,	 you	 might	 remember	 that,
technically,	 big	O	 refers	 to	 an	 upper	 bound.	Anything	 that	 is	O(N)	 could
also	be	said	to	be	O(N2).	To	describe	the	exact	runtime,	we	should	be	using
big-theta.

That	 is	 true,	 by	 the	 official	 mathematical	 definition	 of	 big	 O.	 However,

outside	of	an	algorithms	class,	this	distinction	has	been	forgotten	about.
Sample	Problems
Now,	let’s	move	on	to	some	examples	(in	pseudocode).	Can	you	find	the	runtime
of	each	of	these	problems?

Example	1
Consider	the	following	code	to	print	the	numbers	from	0	to	n.
	

1.	 for	i	from	0	to	n	{

2.	 			print	i

3.	 }

This	 is	 said	 to	 be	 O(n)	 time.	 That	 is,	 if	 we	 were	 to	 run	 this	 code	 for	 many
different	values	of	n,	the	runtime	would	increase	at	a	rate	proportional	to	n.

Example	2
What	about	this	code?
	

1.	 sum	=	0

2.	 for	i	from	0	to	n	{

3.	 			sum	=	sum	+	i

4.	 			for	j	from	0	to	n	{

5.	 					sum	=	sum	+	j

6.	 			}

7.	 }

This	 is	O(N2)	 time.	 There	 are	 two	 for-loops,	 each	 running	 from	 0	 to	 n.	 How
many	times	does	line	5	get	executed?	O(N2).	The	time	for	this	code	to	run	will
increase	at	a	rate	of	O(N2).

Example	3
The	code	below	uses	two	variables.	What	is	its	running	time?
	

1.	 /*	Assume	A	and	B	are	both	arrays.*/

2.	 for	i	from	0	to	A.length	{

3.	 			int	j	=	0;

4.	 			while	(a[i]	!=	b[j])	{

5.	 					print	a[i]

6.	 					j	=	j	+	1

7.	 			}

8.	 }

This	 is	 said	 to	be	O(a*b),	where	a	 is	 the	 length	of	A	and	b	 is	 the	 length	of	B.
Although	 the	 inner	 while	 loop	 may	 sometimes	 terminate	 early	 (having	 found
a[i]),	the	expected	case	is	that	it	will	iterate	through	roughly	all	of	B.

Example	4
Here	is	a	more	challenging	example.
	

1.	 int	i	=	N;

2.	 while	i	>=	1	{

3.	 			print	i

4.	 			i	=	i	/	2

5.	 }

We	 need	 to	 think	 about	 what	 this	 for	 loop	 will	 do.	 This	 for	 loop	 will	 do
something	(print	a	value)	and	then	continuously	divide	by	2	until	it	gets	below	1.

How	many	times	can	we	divide	N	by	2	until	we	get	below	1	and	the	while	loop
terminates?	If	we	approached	this	in	reverse,	we	could	say:	how	many	times	can
we	multiply	1	by	2	until	we	get	to	N?	This	would	be	the	value	x,	where	2x	=	n.
This	for	loop,	therefore,	iterates	x	times.

Now	we	just	need	to	solve	for	x:

2x	=	n

log(2x)	=	log(n)

x	log(2)	=	log(n)

x	=	log(n)	/	log(2)

So,	this	code	operates	in	O(log(n))	time.

This	is	a	good	thing	to	remember:	if	something	continuously	divides	in	half,	it	is
O(log(N))	time.

Recursion
If	a	function	can	call	other	functions,	then	it	can	call	itself.	This	is	recursion.

Recursion	can	be	a	useful	strategy	to	solve	a	large	number	of	problems.	It	works
well	when	the	solution	to	a	problem	can	be	defined	in	terms	of	the	solutions	to
subproblems.

For	example,	consider	the	factorial	problem.	What	is	n!	(n	factorial)?	n!	is	n	*
(n-1)	*	(n-2)	*	…	*	1.	We	could	also	say	that	n!	is	n	*	(n-1)!.

This	leads	to	an	extremely	short	bit	of	code	to	compute	n!.
	

1.	 int	factorial(int	n)	{

2.	 			if	(n	==	0	or	n	==	1)	{	/*	base	case	*/

3.	 					return	1;

4.	 			}	else	{

5.	 					return	n	*	factorial(n-1);

6.	 			}

7.	 }

The	base	case	(or	terminating	condition)	is	extremely	important.	Without	it,	the
function	would	run	forever.

Here’s	another	example	of	a	recursive	function.	This	computes	the	nth	fibonacci
number.	As	you	may	recall,	 the	nth	fibonacci	number,	f(n),	is	f(n-1)	+	f(n-
2).
	

1.	 int	fibonacci(int	n)	{

2.	 			if	(n	==	0)	{

3.	 					return	0;

4.	 			}	else	if	(n	==	1)	{

5.	 					return	1;

6.	 			}	else	{

7.	 					return	fibonacci(n-1)	+	fibonacci(n-2);

8.	 			}

9.	 }

This	is	a	natural	function	to	implement	recursively,	as	the	nth	fibonacci	numbers
are	defined	by	their	smaller	problems.

Memory	Usage

Any	problem	that	can	be	solved	recursively	can	also	be	solved	iteratively	(non-
recursively),	although	sometimes	doing	so	is	much	more	complicated.	However,
recursion	comes	with	a	drawback,	which	is	memory	usage.

Recall	this	example:
	

1.	 int	factorial(int	n)	{

2.	 			if	(n	==	1)	{	/*	base	case	*/

3.	 					return	1;

4.	 			}	else	{

5.	 					return	n	*	factorial(n-1);

6.	 			}

7.	 }

This	takes	O(N)	time,	and	will	on	any	solution.	What	is	 its	memory	usage?	Its
memory	 usage	 will	 be	 O(N)	 too	 (assuming	 no	 fancy	 optimizations	 by	 the
compiler).

The	method	factorial(n)	calls	factorial(n-1),	which	calls	factorial(n-2),	and	so	on.
Note	that	factorial(n)	does	not	complete	until	factorial(n-1)	completes,	which	in
turn	doesn’t	complete	until	factorial(n-2).

Therefore,	at	one	point	in	time,	we	have	n	functions	in	operation	at	once,	on	the
“call	stack.”

factorial(0)

factorial(1)

...

factorial(n-1)

factorial(n)

	
Each	 one	 of	 those	 takes	 up	 some	memory.	 Therefore,	 at	 one	 point	 in	 time,	 n
chunks	 of	 memory	 are	 being	 used.	 This	 means	 that	 this	 program,	 when
implemented	recursively,	is	O(N)	time	and	O(N)	memory.

This	is	the	drawback	of	recursion:	the	recursive	calls	take	up	memory.

How	You	Are	Evaluated
Some	coding	and	algorithm	problems	can	be	quite	 straightforward,	but	a	good
number	are	actually	very	challenging.	They’re	challenging	for	good	reason:	easy
problems	wouldn’t	help	interviewers	distinguish	great	candidates	from	just	so-so
candidates.

What	many	candidates	don’t	realize	though	is	that	you	aren’t	expected	to	solve	a
tough	problem	 immediately.	 It’s	great	 if	you	can,	but	 it’s	often	not	 realistic.	A
tough	 problem	 can	 often	 take	 the	 entire	 interview	 to	 solve,	 even	 with	 some
guidance	from	the	interviewer.

Evaluation	 of	 your	 performance	 is	 not	 about	 whether	 you	 got	 the	 problem
“right”	 or	 not.	 This	 has	 little	 meaning.	 Rather,	 the	 evaluation	 is	 a	 lot	 more
qualitative	and,	frankly,	subjective:
	

How	willing	were	you	to	solve	the	problem?	If	you	get	scared	and	give	up,
that’s	 a	 red	 flag.	 Interviewers	 want	 candidates	 who	 are	 excited	 about
solving	hard	problems.	They	tend	to	make	good	employees.
How	quickly	did	you	solve	it?
How	optimal	was	your	algorithm?
How	did	you	approach	the	problem?
How	much	help	did	you	need?
How	clean	was	your	code?
How	 was	 your	 communication	 in	 discussing	 the	 problem?	 How	 did	 you
react	to	feedback	and	guidance	from	the	interviewer?

None	of	these	aspects	are	yes/no	decisions.

An	 interviewer	 is	 not	 given	 metrics	 to	 decide	 how	 quick	 is	 “quick”	 on	 a
problem,	or	how	many	bugs	constitutes	“buggy.”	How	then	does	she	determine
how	you	did?

She	 determines	 performance	 by	 comparing	 you—indirectly—to	 other
candidates.	That	is,	the	first	time	she	asks	the	question	she	doesn’t	have	a	good
feel	for	whether	X	minutes	is	fast	or	slow.	As	she	asks	more	and	more	people	the
same	question,	it	starts	becoming	clearer.	When	other	people	typically	take	20	-
30	minutes	to	solve	a	question	and	you	get	it	in	10	minutes,	she	knows	that	you

solved	it	quickly.

Because	 the	 evaluation	 is	 relative,	 it’s	 also	 extremely	 difficult	 to	 judge	 by
yourself	how	you	did	in	an	interview.	You	may	feel	you	struggled,	but	you	don’t
know	how	much	other	candidates	struggled.

How	To	Approach
Coding	and	algorithm	questions	are	designed	to	test	your	problem-solving	skills.
Therefore,	 you	 want	 to	 show	 the	 interviewer	 how	 you’re	 approaching	 the
problem.

The	following	approach	works	well:
	

1.	Clarify	 the	 Problem:	 Make	 sure	 you	 understand
what	 the	 problem	 is	 asking.	Ask	 questions	 to	 verify
any	assumptions.	For	example,	if	it’s	a	binary	tree,	is
it	a	binary	search	tree?	Is	it	balanced?	You	might	even
want	to	repeat	the	problem	back	in	your	own	words.

2.	Go	 to	 the	Whiteboard:	When	 you	 hear	 a	 problem,
go	 to	 the	whiteboard	 and	 create	 an	 example	 for	 this
problem.	Your	 example	 should	be	general	 enough	 to
help	you	solve	 the	problem	and	should	avoid	special
cases.

3.	 Talk	 Out	 Loud:	 Talk	 out	 loud	 and	 brainstorm
solutions	with	your	interviewer.	If	you	can	think	of	a
brute-force	 solution,	 but	 you	 don’t	 think	 it’s	 good
enough,	 go	 ahead	 and	 explain	 that	 solution	 to	 your
interviewer.	 At	 least	 it	 will	 give	 you	 a	 jumping-off
point	for	solving	the	problem.

4.	 Think	 Critically:	 Once	 you’ve	 come	 up	 with	 an
algorithm,	 think	 through	 whether	 it	 really	 works.
What	 is	 its	 big	O	 time?	Can	 you	 do	 better?	Does	 it
actually	solve	the	problem?	Are	there	any	cases	where

it	will	fail?
5.	Code,	Slowly	and	Methodically:	Once	you	and	your
interviewer	 are	 comfortable	with	 the	 code,	 go	 ahead
and	 start	 coding	 on	 the	 whiteboard.	 If	 it	 helps,	 you
can	write	out	some	pseudocode	first.	Make	sure	when
you’re	 coding	 that	 you	 really,	 truly	 understand	what
you’re	 doing.	 If	 you	 get	 confused	 while	 you’re
coding,	 take	 a	 step	 back	 and	 think	 through	 your
algorithm.	Rushing	will	not	help	you	do	better.

6.	 Test	 and	 Fix:	 Just	 because	 there’s	 no	 computer
doesn’t	mean	you	don’t	test.	You	must	test	your	code.
In	 this	 case,	 you’ll	walk	 through	your	 code	with	 the
edge	cases	and	normal	cases.	When	you	find	bugs—
and	 you	 will	 (bug-free	 code	 is	 unusual	 in	 an
interview)—think	 through	what	 caused	 the	 bug,	 and
then	carefully	fix	it.

Observe	 that	 the	 coding	 part	 is	 Step	 5,	 not	 Step	 1.	 Do	 not	 just	 get	 up	 to	 the
whiteboard	 and	 start	 coding	 once	 you	 hear	 a	 problem.	 Take	 your	 time	 to
brainstorm	a	 solution	with	your	 interviewer.	The	algorithm	part	often	 takes	up
most	of	the	interview,	and	sometimes	even	the	entire	interview.

Remember:	 if	 you’re	 struggling	 to	 solve	 a	 problem,	 that’s	 normal.	 These
problems	are	designed	to	be	difficult.

Developing	an	Algorithm
As	we’ve	said,	many	problems	are	difficult.	How	then	do	you	come	up	with	an
algorithm?	Here	are	a	few	strategies	that	work	well:
	

Use	an	Example:	When	you	get	a	problem,	don’t	just	sit	there	in	your	chair
and	try	to	solve	it	in	your	head.	Get	up,	go	to	the	whiteboard,	and	sketch	out
an	 example.	 For	 example,	 if	 you	wanted	 to	 figure	 out	 how	 to	merge	 two
sorted	arrays,	draw	an	example	of	two	specific	arrays,	like	{1,	5,	8,	9}	and
{3,	 5,	 7,	 10,	 12},	 and	 walk	 through	 how	 you	 would	 merge	 these.	 Use
specific	values	 (not	 just	variable	names	 like	a1	and	a2)	 and	avoid	 special
cases	(such	as	the	arrays	having	no	elements	in	common).
Optimize	the	Brute	Force:	There	is	no	shame	at	all	in	starting	with	a	brute
force	solution	or	a	naive	solution.	 It	gives	you	a	good	starting	point	 from
which	you	can	optimize.	If	the	brute	force	is	slow,	think	about	why	it’s	slow.
Which	 steps	 of	 the	 algorithm	 are	 the	 biggest	 time	 hogs?	 Focus	 on
optimizing	those.
Solve	 for	Base	Case:	 Sometimes,	 it’s	 easy	 to	 solve	 a	 problem	 for	 small
cases.	Try	solving	it	for	0,	then	1,	then	2,	and	so	on.	Can	you	see	a	pattern?
Or,	can	you	build	the	answers	for	these	larger	cases	using	the	answers	for	a
prior	one?	For	example,	if	you’re	trying	to	compute	all	subsets	of	{a,	b,	c},
you	might	be	able	to	use	subsets	of	{a,	b}	to	do	it.
Think	about	Similar	Problems:	 If	 the	 problem	 sounds	 similar	 to	 others
you’ve	heard	before,	see	 if	a	similar	approach	will	work	for	 this	problem.
The	more	practice	you	do	on	solving	technical	questions,	the	easier	it	will
be	to	come	up	with	an	algorithm.
Simplify	and	Tweak:	Interview	problems	come	with	certain	constraints,	in
the	 size	 of	 the	 input,	 the	 type	 of	 input,	 the	 ranges,	 or	 another	 factor.	 Try
tweaking	or	simplifying	 the	problem	in	some	way	 to	see	 if	you	can	solve
this	alternate	version.
Record	Your	Insights:	Some	problems	have	key	“insights”	that	you	might
discover	during	your	problem	solving.	For	example,	maybe	you’re	looking
for	a	value	in	a	tree	and	you	realize	that	it	has	to	be	on	the	right	side	of	a
left	subtree;	remember	that	insight.

Whatever	 you	 do,	 approach	 the	 problem	 energetically.	 Don’t	 be	 discouraged
when	you	struggle,	and	don’t	give	up.	Interviewers	want	to	see	that	you’ll	push

your	way	through	problems.

Additional	Questions

16.19	 Design	 an	 algorithm	 and	 write	 code	 to	 find	 all
solutions	 to	 the	equation	a3	+	b3	=	c3	+	d3	where	a,	b,	c,
and	 d	 are	 positive	 integers	 less	 than	 1000.	 If	 you	wish,
you	 can	 print	 only	 “interesting”	 solutions.	 That	 is,	 you
can	 ignore	 solutions	 of	 the	 form	 x3	 +	 y3	 =	 x3	 +	 y3	 and
solutions	 that	are	 simple	permutations	of	other	 solutions
(swapping	 left	 and	 right	 hand	 sides,	 swapping	 a	 and	 b,
swapping	c	and	d).	For	example,	if	you	were	printing	all
solutions	less	than	20,	you	could	choose	to	print	only	23	+
163	=	93	+	153	and	13	+	123	=	93	+	103.

jump	to	solution

16.20	Given	a	string,	print	all	permutations	of	that	string.
You	 can	 assume	 the	 word	 does	 not	 have	 any	 duplicate
characters.

jump	to	solution
16.21	 In	 a	 group	 of	 people,	 a	 person	 is	 called	 a
“celebrity”	if	everyone	knows	them	but	they	know	no	one
else.	 You	 are	 given	 a	 function	 knows(a,	 b)	 which	 tells
you	 if	person	a	knows	person	b.	Design	an	algorithm	to
find	the	celebrity	(if	one	exists).

For	 simplicity,	 you	can	assume	 that	 everyone	 is	given	a
label	from	0	to	N-1.	You	need	to	implement	a	function	int
findCelebrity(int	N).

Observe	that:

(1)	There	 can	 only	 be	 one	 celebrity	 at	most	 (due	 to	 the
definition	of	a	celebrity).
(2)	The	knows	 function	 is	 the	only	way	 to	 look	up	who
knows	who.

jump	to	solution
16.22	You	have	an	NxN	matrix	of	characters	and	a	list	of
valid	words	 (provided	 in	any	 format	you	wish).	A	word
can	 be	 formed	 by	 starting	 with	 any	 character	 and	 then
moving	up,	down,	left,	or	right.	Words	do	not	have	to	be
in	 a	 straight	 line	 (PACKING	 is	 a	 word	 below).	 You
cannot	reuse	a	letter	for	the	same	word,	so	GOING	(in	the
grid	 below)	would	 not	 be	 a	word	 since	 it	 reuses	 the	G.
Design	 an	 algorithm	 and	 write	 code	 to	 print	 all	 valid
words.

L	I	G	O

E	P	N	I

N	A	C	K

S	M	A	R

jump	to	solution

16.23	Given	an	array	of	integers	(with	both	positive	and
negative	 values),	 find	 the	 contiguous	 sequence	with	 the
largest	sum.	Return	just	the	sum.

Example:
Input:	2,	-8,	3,	-2,	4,	-10
Output:	5	(i.e.,	{3,	-2,	4})

jump	to	solution

Solutions
All	solutions	will	be	implemented	with	Java.	If	you	don’t	know	Java,	that’s	okay.
We’ll	try	to	keep	our	code	free	of	complex	Java	syntax	so	that	you	can	focus	on
the	main	algorithm.

Note:	 Programming	 code	 can	 be	 difficult	 to	 read	 on	 a	 Kindle's	 narrow
screen,	 since	 it	 causes	 line	 breaks	 in	 the	 wrong	 places.	 If	 your	 Kindle
support	landscape	mode,	you	might	want	to	try	that.	(This	is	supported	with
the	Kindle	Paperwhite.)	Otherwise,	try	reading	it	on	the	desktop	app	(resize
the	app	to	have	a	larger	page	size	and	increase	the	words	per	line).

16.1	 Given	 a	 sorted	 array	 of	 positive	 integers	 with	 an
empty	spot	(zero)	at	 the	end,	 insert	an	element	 in	sorted
order.

jump	to	question
We	can	imagine	that	our	array	looks	something	like	this	(with	a	blank	spot	at	the
end):

1	4	7	8	9	_

If	we	need	to	insert	an	element	like	6,	we	can’t	just	insert	it	at	the	end.	We	are
supposed	to	put	it	in	order.

1	4	6	7	8	9

This	requires	“shifting”	all	elements	down	to	make	space	for	6	and	then	inserting
it.

There	are	two	ways	of	approaching	this	problem.

Approach	1:	Shift	From	Back,	Then	Insert
The	first	approach	is	to	shift	all	the	elements	over	and	then	insert	the	value	x.	We
have	to	be	careful	though	to	not	overwrite	values	as	we’re	inserting.

Instead	of	shifting	from	the	front,	we	can	shift	from	the	back	moving	forwards.

1	4	7	8	9	_

	
We	would	first	copy	9	into	the	empty	spot.	Then	8	into	where	9	was.	Then	7	into
where	8	was,	and	so	on.	When	we	find	the	appropriate	spot	for	x,	we	stop	and

insert	x.
	

1.	 boolean	insert(int[]	array,	int	x)	{

2.	 			/*	Make	sure	input	is	valid.*/

3.	 			if	(array[array.length	-	1]	!=	0	||	x	<=	0)	{

4.	 					return	false;

5.	 			}

6.	
7.	 			/*	Start	from	last	non-blank	element,	moving	left	and	copying	elements	one	by	one.	Stop	when	we’ve	found	the

right	spot	for	x	or	when	we’ve	hit	the	beginning	of	the	array.*/

8.	 			int	index	=	array.length	-	2;	//	start	from	2nd	to	last

9.	 			while	(index	>=	0	&&	array[index]	>	x)	{

10.	 					//	shift	over	by	one

11.	 					array[index	+	1]	=	array[index];	

12.	 					

13.	 					//	move	to	next	element

14.	 					index	=	index	-	1;	

15.	 			}

16.	
17.	 			/*	Insert	element	wherever	the	above	loop	stopped.*/

18.	 			array[index	+	1]	=	x;

19.	
20.	 			return	true;

21.	 }

We	return	true	if	we	could	insert	the	element	or	false	if	there	was	an	error.

Approach	2:	Swap	Elements	Moving	Forward
Alternatively,	 we	 could	 iterate	 forwards	 through	 the	 array.	 For	 the	 initial
elements	in	the	array	(the	ones	that	are	less	than	x),	we	don’t	do	anything.	Those
won’t	be	moved.

However,	when	we	find	where	x	should	be	inserted,	we	swap	x	and	the	current
element	in	the	array.	The	value	of	x	will	now	equal	the	old	element	in	the	array.

When	we	get	to	the	next	element,	we	want	to	swap	x	for	that	value.	We	continue
doing	this	for	each	element	in	the	array	until	we	get	to	the	end.

insert	6	into	2,	3,	7,	8,	9,	_

set	x	=	6

start	i	at	A[0]

move	i	to	A[1]

move	i	to	A[2]

swap	A[2]	and	x.

			A	=	{2,	3,	6,	8,	9,	_}

			x	=	7

swap	A[3]	and	x.

			A	=	{2,	3,	6,	7,	9,	_}

			x	=	8

swap	A[4]	and	x.

			A	=	{2,	3,	6,	7,	8,	_}

			x	=	9

swap	A[5]	and	x.

			A	=	{2,	3,	6,	7,	8,	9}

			x	=	_

			
The	following	code	implements	this	algorithm.
	

1.	 boolean	insert(int[]	array,	int	x)	{

2.	 			/*	Make	sure	input	is	valid.*/

3.	 			if	(array[array.length	-	1]	!=	0	||	x	<=	0)	{

4.	 					return	false;

5.	 			}

6.	
7.	 			for	(int	i	=	0;	i	<	array.length;	i++)	{

8.	 					if	(x	<	array[i]	||	array[i]	==	0)	{

9.	 								/*	Swap	x	and	array[i].*/

10.	 								int	temp	=	array[i];

11.	 								array[i]	=	x;

12.	 								x	=	temp;

13.	 					}

14.	 			}

15.	
16.	 			return	true;

17.	 }

Note	that	once	the	if	statement	on	line	8	becomes	true,	it	will	always	be	true.

Both	algorithms	will	take	O(N)	time.

16.2	Reverse	 the	order	 of	 elements	 in	 an	 array	 (without
creating	a	new	array).

jump	to	question
At	 first	 glance,	 we	 might	 want	 to	 just	 create	 a	 second	 array,	 iterate	 over	 the
elements	 in	 order,	 and	 insert	 them	 in	 reverse	 order	 into	 the	 new	 array.
Unfortunately,	the	question	says	to	not	create	a	second	array.

Let’s	look	at	any	example.

Original:	0,	1,	2,	3,	4,	5,	6

Reversed:	6,	5,	4,	3,	2,	1,	0

	
You	might	notice	that	by	reversing	the	array,	we’re	putting	the	0	where	the	6	is
and	the	6	where	the	0	is.	Likewise,	the	5	and	the	1	are	put	in	each	other’s	places.
That	is,	we’re	swapping	values!

Rather	than	create	a	second	array,	we	can	iterate	through	the	array,	swapping	the
left	values	with	 the	corresponding	values	on	 the	 right.	We	only	need	 to	 iterate
through	the	left	half	of	the	array,	since	the	right	half	of	the	array	will	have	been
taken	care	of	already.
	

1.	 void	reverse(int[]	array)	{

2.	 			int	midpoint	=	array.length	/	2;

3.	 			for	(int	i	=	0;	i	<	midpoint;	i++)	{

4.	 					/*	Get	corresponding	index	on	right	side.*/

5.	 					int	otherside	=	array.length	-	1	-	i;

6.	
7.	 					/*	Swap	left	and	right	values.*/

8.	 					int	temp	=	array[otherside];

9.	 					array[otherside]	=	array[i];

10.	 					array[i]	=	temp;

11.	 			}

12.	 }

Be	very	careful	with	the	arithmetic	on	lines	2	and	5.	Those	are	the	sorts	of	things
you	should	double	and	triple	check	in	an	interview.

Both	algorithms	will	take	O(N)	time.

16.3	Given	two	lists	(A	and	B)	of	unique	strings,	write	a
program	to	determine	if	A	is	a	subset	of	B.	That	is,	check

if	all	the	elements	from	A	are	contained	in	B.
jump	to	question

We’re	told	that	the	two	lists	contain	unique	strings,	so	we	only	need	to	check	if
all	the	elements	in	one	list	are	contained	in	the	other.

Approach	1:	Brute	Force
We	can	approach	this	by	“brute	force.”	For	each	element	in	A,	check	if	it	is	in	B.

As	 soon	 as	we	 find	 an	 element	 a	 in	A	which	 is	 not	 in	B,	we	 can	 return	 false
because	 we	 know	 A	 is	 not	 a	 subset.	 If	 we	 reach	 the	 end	 of	 A	 and	 haven’t
returned	yet,	then	we	know	we	were	able	to	find	every	element.	We	return	true.
	

1.	 boolean	isSubsetBruteForce(String[]	bigger,	String[]	smaller)	{

2.	 			for	(String	s	:	smaller)	{

3.	 					boolean	found	=	false;

4.	 					for	(String	b	:	bigger)	{

5.	 								/*	found	element.*/

6.	 								if	(s.equals(b))	{	

7.	 									found	=	true;

8.	 									break;

9.	 								}

10.	 					}

11.	 					

12.	 					/*	s	wasn’t	found	->	not	subset.	*/

13.	 					if	(!found)	{	

14.	 								return	false;

15.	 					}

16.	 			}

17.	 			

18.	 			/*	all	elements	found.	*/

19.	 			return	true;	

20.	 }

This	algorithm	takes	O(a*b)	time,	where	a	is	the	length	of	A	and	b	is	the	length
of	B.

Approach	2:	Hashtable

The	reason	that	the	earlier	approach	is	so	slow	is	that	we	have	to	search	through
B	for	each	element.	Wouldn’t	it	be	nice	if	we	could	just	look	up	if	an	element	is
in	B?

We	can!	This	is	what	a	hashtable	allows	us	to	do.	We	can	build	a	hashtable	of	all
the	elements	in	B.	Then,	when	we	want	to	look	up	if	an	element	is	in	B,	we	just
use	that	hashtable.
	

1.	 boolean	isSubset(String[]	bigger,	String[]	smaller)	{

2.	 			Hashtable<String,	Boolean>	hash	=	new	Hashtable<String,	Boolean>();

3.	
4.	 			/*	Record	all	the	elements	in	the	bigger	list.*/

5.	 			for	(String	b	:	bigger)	{

6.	 					hash.put(b,	true);

7.	 			}

8.	
9.	 			/*	Check	if	the	bigger	hashtable	contains	all	the	strings.*/

10.	 			for	(String	s	:	smaller)	{

11.	 					if	(!hash.containsKey(s)	||	hash.get(s)	!=	true)	{

12.	 								return	false;

13.	 					}

14.	 			}

15.	 			

16.	 			return	true;

17.	 }

This	algorithm	takes	O(a+b)	time,	where	a	is	the	length	of	A	and	b	is	the	length
of	B.	It	takes	O(b)	additional	memory	to	hold	the	hashtable.

16.4	You	are	given	a	two-dimensional	array	of	sales	data
where	 the	 first	 column	 is	 a	 product	 ID	 and	 the	 second
column	is	the	quantity.	Write	a	function	to	take	this	list	of
data	 and	 return	 a	 new	 two-dimensional	 array	 with	 the
total	sales	for	each	product	ID.

Example:
Input:

211,4

262,3

211,5

216,6

Output:
211,9

262,3

216,6

jump	to	question
The	 output	 for	 this	 method	 needs	 to	 be	 a	 list	 of	 product	 IDs	 and	 their	 total
counts.	We	can	do	this	in	a	straightforward	manner	by	using	a	hashtable.

We	 iterate	 through	 the	 list	 of	 (productID,	 quantity)	 pairs.	 For	 each	 value,	 we
increment	its	entry	in	the	hashtable	or	insert	it	if	it’s	not	already	in	there.	Finally,
we	convert	the	hashtable	back	into	an	array.
	

1.	 int[][]	totalSales(int[][]	data)	{

2.	 			Hashtable<Integer,	Integer>	hash	=	new	Hashtable<Integer,	Integer>();

3.	
4.	 			/*	Compute	total	sales	of	each	product.*/

5.	 			for	(int	i	=	0;	i	<	data.length;	i++)	{

6.	 					int	productId	=	data[i][0];

7.	 					int	quantity	=	data[i][1];

8.	 					if	(hash.containsKey(productId))	{

9.	 								quantity	=	quantity	+	hash.get(productId);

10.	 					}

11.	 					hash.put(productId,	quantity);

12.	 			}

13.	
14.	 			/*	Convert	hashtable	back	to	array.*/

15.	 			int[][]	totals	=	new	int[hash.keySet().size()][2];

16.	 			int	index	=	0;

17.	 			for	(int	key	:	hash.keySet())	{

18.	 					totals[index][0]	=	key;

19.	 					totals[index][1]	=	hash.get(key);

20.	 					index	=	index	+	1;

21.	 			}

22.	 			

23.	 			return	totals;

24.	 }

If	 you	 don’t	 know	 the	 specific	 commands	 for	 things	 like	 keySet	 and
containsKey,	don’t	worry.	Your	interviewer	shouldn’t	care	about	things	like	this.
The	 important	 thing	 is	 that	 you	 know	 how	 to	 translate	 an	 approach	 into
something	that	resembles	workable	code.

This	algorithm	takes	O(N)	time,	where	N	is	the	number	of	lines	in	the	input.

16.5	Insert	an	element	into	a	binary	search	tree	(in	order).
You	 may	 assume	 that	 the	 binary	 search	 tree	 contains
integers.

jump	to	question
This	 is	 a	 straightforward	 question	 that	 follows	 from	 the	 definition	 of	 a	 binary
search	tree.

In	 a	 binary	 search	 tree,	 lesser	 values	 are	 put	 on	 the	 left	 of	 a	 node	 and	greater
values	are	put	on	the	right.

The	easiest	way	to	implement	this	is	recursively.	Start	with	the	root	and	compare
the	value	you	want	to	insert,	x.	If	x	is	less	than	the	root,	then	call	insert	on	the
root.left.	When	x	is	greater	than	the	root,	then	call	insert	on	the	right	side.	Repeat
this	until	you	don’t	have	a	left	or	right	child.	Insert	x	there.
	

1.	 boolean	insert(TreeNode	root,	int	data)	{

2.	 			if	(root	==	null)	{	//	failure

3.	 					return	false;

4.	 			}

5.	
6.	 			if	(data	<=	root.data)	{

7.	 					if	(root.left	==	null)	{

8.	 								/*	found	an	open	spot.*/

9.	 								root.left	=	new	TreeNode(data);	

10.	 					}	else	{

11.	 								/*	recurse	to	insert	node	on	left	*/

12.	 								return	insert(root.left,	data);	

13.	 					}

14.	 			}	else	{

15.	 					if	(root.right	==	null)	{	

16.	 								/*	found	an	open	spot.	*/

17.	 								root.right	=	new	TreeNode(data);	

18.	 					}	else	{

19.	 								/*	recurse	to	insert	node	on	right.	*/

20.	 								return	insert(root.right,	data);	

21.	 					}

22.	 			}

23.	 			

24.	 			return	true;	//	success

25.	 }

The	 time	 to	 insert	 a	 node	will	 depend	 on	 the	 height	 of	 the	 tree.	 If	 the	 tree	 is
relatively	 balanced,	 it	 should	 have	 height	O(log	N)	where	N	 is	 the	 number	 of
nodes	in	the	tree.	However,	if	the	tree	is	very	imbalanced	(for	example,	basically
a	straight	line	down	of	nodes	all	on	one	side),	the	height	could	be	as	much	as	N.

16.6	Given	 a	 binary	 search	 tree	which	 contains	 integers
as	values,	calculate	the	sum	of	all	the	numbers.

jump	to	question
If	 we	 approach	 problems	 from	 the	 right	 perspective,	 some	 problems	 are
surprisingly	simple.	In	this	case,	the	“right”	perspective	means	recursively.

Suppose	we	want	to	compute	the	sum	of	the	nodes	in	a	tree	like	this:

	

We	could	traverse	the	tree,	collapse	it	into	an	array,	and	then	compute	the	sum	of
those	values.	That’s	a	lot	more	complicated	than	is	necessary.

The	simpler	way	is	to	think	about	the	problem	in	terms	of	its	subproblems.	The

sum	of	the	entire	tree	is	going	to	be	the	sum	of	the	left	subtree	+	sum	of	the	right
subtree	+	sum	of	the	root.

sum(tree_at_20)	=

							sum(tree_at_10)

					+	sum(tree_at_30)

					+	value_at_node_20

	
Getting	the	sum	at	node	10	can	then	be	defined	in	terms	of	its	subproblems.

sum(tree_at_10)	=

							sum(tree_at_5)

					+	sum(tree_at_15)

					+	value_at_node_10

												
We	can	almost	directly	translate	this	into	code.
	

1.	 int	sum(TreeNode	root)	{

2.	 			if	(root	==	null)	{

3.	 					return	0;

4.	 			}

5.	 			return	root.data	+	sum(root.left)	+	sum(root.right);

6.	 }

If	we	hit	 the	end	of	 a	path	 (a	null	node),	we	 return	0.	 If	you	prefer,	we	could
instead	do	this:
	

1.	 int	sum(TreeNode	root)	{

2.	 			if	(root	==	null)	{

3.	 					return	0;

4.	 			}

5.	
6.	 			int	total	=	root.data;

7.	 			if	(root.left	!=	null)	{

8.	 					total	+=	sum(root.left);

9.	 			}

10.	 			

11.	 			if	(root.right	!=	null)	{

12.	 					total	+=	sum(root.right);

13.	 			}

14.	 			

15.	 			return	total;

16.	 }

Regardless	 of	which	 code	 you	 use,	 the	 runtime	will	 be	O(N),	where	N	 is	 the
number	of	nodes	in	the	tree.

One	way	to	see	the	runtime	is	to	realize	that	sum	will	be	called	exactly	once	for
each	node	in	the	tree.	If	there	are	O(N)	calls	to	sum,	then	the	runtime	should	be
O(N).

16.7	 Insert	 a	 node	 into	 a	 sorted	 linked	 list	 (in	 order).
(Don’t	forget	about	what	happens	when	the	new	element
is	at	the	start	or	end!)

jump	to	question
To	insert	a	number	in	order	into	a	linked	list,	we	first	need	to	find	the	right	place
to	insert	the	node.	Then,	we	need	to	actually	insert	it.

The	tricky	bit	is	figuring	out	how	to	handle	inserting	a	node	into	the	front	of	the
linked	list.

Imagine	 we	 call	 an	 insertInOrder	 method	 that	 looks	 like	 this,	 and	 it	 (for	 this
particular	case)	needs	to	insert	n	into	the	front	of	the	linked	list:

void	insertInOrder(LinkedListNode	nd,	int	value)

	
Just	 inserting	node	n	and	having	n.next	point	 to	nd	 is	not	enough.	Whoever	 is
using	the	linked	list	doesn’t	know	that	 the	real	head	of	the	linked	list	has	been
updated	from	nd	to	n.	They	only	have	a	reference	to	nd.

Therefore,	in	an	insert	method,	you	need	to	return	the	new	head	of	the	linked	list.
Most	of	 the	 time,	 the	head	will	be	 the	same	as	 it	was	before	you	called	 insert.
Sometimes	it	will	change	though,	and	you	need	to	notify	the	caller	of	this.
	

1.	 LinkedListNode	insert(LinkedListNode	head,	int	data)	{

2.	 			/*	Create	new	node.*/

3.	 			LinkedListNode	node	=	new	LinkedListNode(data);

4.	 			

5.	 			/*	If	being	insert	into	front	of	linked	list,	then	insert	node	and	return	new	head.*/

6.	 			if	(head	==	null	||	data	<	head.data)	{

7.	 							node.next	=	head;

8.	 							return	node;

9.	 			}

10.	 			

11.	 			/*	Find	the	right	spot	(in	order)	to	insert	the	node	by	traversing	through	the	list.*/

12.	 			LinkedListNode	current	=	head;

13.	 			while	(current.next	!=	null	&&	data	>	current.next.data)	{

14.	 					current	=	current.next;

15.	 			}

16.	 			

17.	 			/*	Insert	node.*/

18.	 			node.next	=	current.next;

19.	 			current.next	=	node;

20.	 			

21.	 			/*	Return	old	head.	It	hasn’t	moved.*/

22.	 			return	head;

23.	 }

This	algorithm	takes	O(N)	time,	where	N	is	the	number	of	nodes.

16.8	“Sort”	a	linked	list	that	contains	just	0s	and	1s.	That
is,	modify	the	list	such	that	all	0s	come	before	all	1s.

jump	to	question
There	are	many	ways	of	doing	this	problem.

Approach	1:	Build	Two	Linked	Lists
One	of	the	simplest	ways	is	to	build	a	“zeros	list”	and	a	“ones	list”	and	then	join
them	at	the	end.
	

1.	 LinkedListNode	sort(LinkedListNode	head)	{

2.	 			LinkedListNode	zeroHead	=	null;

3.	 			LinkedListNode	zeroTail	=	null;

4.	 			LinkedListNode	oneHead	=	null;

5.	 			LinkedListNode	oneTail	=	null;

6.	 			LinkedListNode	n	=	head;

7.	 			

8.	 			while	(n	!=	null)	{

9.	 					LinkedListNode	next	=	n.next;

10.	 					n.next	=	null;

11.	 					if	(n.data	==	0)	{

12.	 								/*	Add	to	end	of	zeros	list.*/

13.	 								if	(zeroHead	==	null)	{

14.	 									zeroHead	=	n;

15.	 								}	else	{

16.	 									zeroTail.next	=	n;

17.	 								}

18.	 								zeroTail	=	n;

19.	 					}	else	{

20.	 								/*	Add	to	end	of	ones	list.*/

21.	 								if	(oneHead	==	null)	{

22.	 									oneHead	=	n;

23.	 								}	else	{

24.	 									oneTail.next	=	n;

25.	 								}

26.	 								oneTail	=	n;

27.	 					}

28.	 					n	=	next;

29.	 			}

30.	
31.	 			/*	Join	lists	and	return.*/

32.	 			if	(zeroTail	==	null)	{

33.	 					oneTail.next	=	null;

34.	 					return	oneTail;

35.	 			}	else	{

36.	 					zeroTail.next	=	oneHead;

37.	 					return	zeroHead;

38.	 			}

39.	 }

Observe	that	we	need	to	return	the	new	head	of	the	linked	list,	as	it	might	have
changed.

Approach	2:	Grow	Left	and	Right
The	prior	approach	gets	lengthy	because	we	need	to	keep	track	of	the	front	and

back	 of	 two	 different	 lists,	 which	 requires	 constantly	 updating	 four	 different
variables.

Four	variables	aren’t	actually	necessary	though.	All	the	problem	has	asked	us	to
do	is	to	put	all	the	0s	before	the	1s.	We	don’t	have	to	keep	the	nodes	in	the	same
order	that	they	were	in	originally.

Therefore,	we	can	instead	just	keep	track	of	the	head	and	tail	of	the	(new)	linked
list.	When	we	get	a	new	0,	we	insert	it	at	the	very	front.	When	we	get	a	new	1,
we	insert	it	at	the	very	end.	This	will	keep	all	0s	before	every	1.
	

1.	 LinkedListNode	sort(LinkedListNode	n)	{

2.	 			LinkedListNode	head	=	n;

3.	 			LinkedListNode	tail	=	n;

4.	 			

5.	 			//	start	with	second	element

6.	 			n	=	n.next;	

7.	 			while	(n	!=	null)	{

8.	 					LinkedListNode	next	=	n.next;

9.	 					if	(n.data	==	0)	{

10.	 								//	0	->	add	to	front

11.	 								n.next	=	head;

12.	 								head	=	n;

13.	 					}	else	{	

14.	 								//	1	->	add	to	tail

15.	 								tail.next	=	n;

16.	 								tail	=	n;

17.	 					}

18.	 					n	=	next;

19.	 			}

20.	 			

21.	 			//	ensure	tail	doesn’t	point	anywhere

22.	 			tail.next	=	null;	

23.	
24.	 			return	head;

25.	 }

We	again	need	to	return	the	new	head	since	it	might	have	changed.

Approach	3:	Count	the	Zeros
We’re	not	actually	required	to	use	the	same	actual	objects	that	we	were	given.	If
we	moved	values,	instead	of	nodes,	that	would	fit	the	problem	requirements.

Therefore,	we	can	just	iterate	through	the	linked	list	once,	counting	the	number
of	0s.	Then,	we	iterate	through	it	again,	setting	the	first	k	values	to	0	and	the	rest
to	1.
	

1.	 void	sort(LinkedListNode	head)	{

2.	 			int	k	=	0;

3.	 			

4.	 			/*	Count	the	number	of	0s.*/

5.	 			LinkedListNode	n	=	head;

6.	 			while	(n	!=	null)	{

7.	 					if	(n.data	==	0)	{

8.	 								k	=	k	+	1;

9.	 					}

10.	 					n	=	n.next;

11.	 			}

12.	
13.	 			/*	Set	first	k	values	to	0.*/

14.	 			n	=	head;

15.	 			while	(n	!=	null)	{

16.	 					if	(k	>	0)	{

17.	 								n.data	=	0;

18.	 								k	=	k	-	1;

19.	 					}	else	{

20.	 								n.data	=	1;

21.	 					}

22.	 					n	=	n.next;

23.	 			}

24.	 }

In	 this	 approach,	we’re	moving	 values,	 not	 nodes.	 The	 actual	 reference	 to	 the
head	won’t	change,	so	we	don’t	need	to	return	anything.

Approach	4:	Swap	the	Values

Since	 we	 only	 need	 to	 move	 the	 values,	 we	 can	 also	 just	 iterate	 through	 the
linked	list,	swapping	the	0s	and	1s	as	we	find	them.

This	approach	works	by	two	pointers,	p	and	q.	The	p	pointer	looks	for	1s	and	the
q	pointer	looks	for	0s.	When	they	find	their	values,	they	swap.
	

1.	 Start	p	at	head.
0->0->0->1->1->0->1->0->1->0

p

2.	 Move	p	to	first	1.
0->0->0->1->1->0->1->0->1->0
									p

3.	 Start	q	at	p.next.
0->0->0->1->1->0->1->0->1->0

									p		q

4.	 Move	q	to	next	0.
0->0->0->1->1->0->1->0->1->0

									p					q

5.	 Swap	values	at	p	and	q.
0->0->0->0->1->1->1->0->1->0

									p					q

6.	 Repeat	at	step	4:
//	move	p	to	next	1

0->0->0->0->1->1->1->0->1->0

												p		q	

//	move	q	to	next	0

0->0->0->0->1->1->1->0->1->0

												p								q	

//	swap

0->0->0->0->0->1->1->1->1->0

												p								q	

//	move	p	to	next	1

0->0->0->0->0->1->1->1->1->0

															p					q	

//	move	q	to	next	0

0->0->0->0->0->1->1->1->1->0

															p											q		

//	swap

0->0->0->0->0->0->1->1->1->1

															p											q

	
	
	
	
	
	
	
	
	

In	other	words,	p	is	always	pointing	to	the	first	1	and	q	is	always	pointing	to	the
first	out	of	place	0	(which	is	the	first	0	after	p).	Whenever	q	finds	a	0,	we	know
the	0	is	out	of	place.	We	swap	its	value	with	p	and	move	p	to	the	next	node.

This	approach	might	be	the	least	intuitive	for	some	people,	but—with	the	use	of
a	helper	function—it	leads	to	fairly	short	code.
	

1.	 void	sort(LinkedListNode	head)	{

2.	 			//	find	first	1

3.	 			LinkedListNode	p	=	nextNodeWithVal(head,	1);	

4.	 			

5.	 			//	find	next	0

6.	 			LinkedListNode	q	=	nextNodeWithVal(p.next,	0);	

7.	 			

8.	 			while	(p	!=	null	&&	q	!=	null)	{

9.	 					q.data	=	1;	//	swap

10.	 					p.data	=	0;

11.	 					

12.	 					//	find	next	1

13.	 					p	=	nextNodeWithVal(p,	1);	

14.	 					

15.	 					//	find	next	0

16.	 					q	=	nextNodeWithVal(q,	0);	

17.	 			}

18.	 }

19.	
20.	 LinkedListNode	nextNodeWithVal(LinkedListNode	n,	int	data)	{

21.	 			while	(n	!=	null	&&	n.data	!=	data)	{

22.	 											n	=	n.next;

23.	 			}

24.	 			return	n;

25.	 }

These	are	just	four	ways	of	solving	the	problem,	but	there	are	many	other	ways
too.	These	four	approaches	are	all	O(N).

16.9	Write	 a	 function	which	 takes	 a	 stack	 as	 input	 and
returns	a	new	stack	which	has	the	elements	reversed.

jump	to	question
The	most	straightforward	way	to	do	this	is	to	just	create	a	new	stack	and	pop	the
elements	from	the	first	stack	onto	the	second.	This	will	put	the	top	element	from

the	original	stack	on	the	bottom	of	the	new	stack.
	

1.	 Stack<Integer>	reverse(Stack<Integer>	stack)	{

2.	 			Stack<Integer>	reversed	=	new	Stack<Integer>();

3.	 			while	(!stack.isEmpty())	{

4.	 					reversed.push(stack.pop());

5.	 			}

6.	 			return	reversed;

7.	 }

The	only	problem	with	this	is	that	our	original	stack	gets	completely	emptied	in
the	 process.	 If	 this	 is	 a	 problem	 (ask	 your	 interviewer!),	 then	 you	 can	 use	 an
additional	stack	to	hold	all	the	popped	values.

We	 push	 the	 popped	 values	 onto	 both	 the	 temp	 stack	 and	 the	 reversed	 stack.
(These	stacks	will	have	the	same	elements	in	the	same—reversed—order.)	Once
we’re	done	popping	the	elements	from	stack,	we	push	them	back	from	temp	onto
stack.
	

1.	 Stack<Integer>	reverseWithoutDestroying(Stack<Integer>	stack)	{

2.	 			Stack<Integer>	reversed	=	new	Stack<Integer>();

3.	 			Stack<Integer>	temp	=	new	Stack<Integer>();

4.	 			

5.	 			while	(!stack.isEmpty())	{

6.	 					int	x	=	stack.pop();

7.	 					reversed.push(x);

8.	 					temp.push(x);

9.	 			}

10.	 			

11.	 			while	(!temp.isEmpty())	{

12.	 					stack.push(temp.pop());

13.	 			}

14.	 			return	reversed;

15.	 }

Both	approaches	will	have	O(N)	runtime.	The	second	one	will	go	 through	 two
passes	instead	of	one,	but	constants	don’t	affect	the	big	O	time.	This	may	seem
surprising	 to	 some	 people,	 but	 remember:	 big	 O	 is	 not	 an	 expression	 of	 how

many	seconds	something	actually	takes.	It	expresses	how	the	time	scales	(in	this
case,	linear)	as	the	size	of	the	input	gets	longer	and	longer.

16.10	 Write	 a	 function	 which	 removes	 all	 the	 even
numbers	 from	 a	 stack.	 You	 should	 return	 the	 original
stack,	not	a	new	one.

jump	to	question
For	this	problem,	we	can	rely	on	the	same	instinct	as	the	second	approach	from
the	 prior	 problem:	 reversing	 something	 twice	 puts	 the	 elements	 back	 in	 their
original	order.

We	can	just	pop	the	stack,	element	by	element.	If	the	element	is	odd	(that	is,	not
even),	push	it	onto	a	new,	temporary	stack.	Then,	once	we’re	all	done,	push	them
back	onto	their	original	stack.
	

1.	 void	removeEvens(Stack<Integer>	stack)	{

2.	 			Stack<Integer>	temp	=	new	Stack<Integer>();

3.	 			while	(!stack.isEmpty())	{

4.	 					int	x	=	stack.pop();

5.	 					

6.	 					/*	Push	evens	onto	new	stack.*/

7.	 					if	(x	%	2	!=	0)	{

8.	 								temp.push(x);

9.	 					}

10.	 			}

11.	 			

12.	 			/*	Return	odds	to	the	stack.*/

13.	 			while	(!temp.isEmpty())	{

14.	 					stack.push(temp.pop());

15.	 			}

16.	 }

This	algorithm	will	take	O(N)	time.	Observe	that,	since	you	have	to	go	through
every	element,	you	can’t	solve	the	problem	any	faster	than	this.

16.11	 Write	 a	 function	 to	 check	 if	 two	 queues	 are

identical	 (same	 values	 in	 the	 same	 order).	 It’s	 okay	 to
modify/destroy	the	two	queues.

jump	to	question
We	are	allowed	to	modify	the	two	queues,	which	should	give	us	a	clue	that	we
need	to	do	just	that.

We	can	repeatedly	remove	the	front	of	each	linked	list	and	compare	the	values.	If
the	values	are	not	equal,	then	we	immediately	return	false.

What	happens	when	one	 list	 is	emptied?	That	depends.	 If	both	 lists	are	empty,
then	we	know	the	linked	lists	are	identical	(nothing	has	failed	yet).	However,	if
only	 one	 list	 is	 empty	 and	 the	 other	 is	 not,	 then	 we	 know	 the	 lists	 were	 of
different	sizes.	After	all,	we’re	removing	the	elements	in	the	same	order.
	

1.	 boolean	isEqual(Queue<Integer>	one,	Queue<Integer>	two)	{

2.	 			/*	Remove	elements	one	by	one	and	check	that	they’re	equal.*/

3.	 			while	(!one.isEmpty()	&&	!two.isEmpty())	{

4.	 					int	oneHead	=	one.remove();

5.	 					int	twoHead	=	two.remove();

6.	 					if	(oneHead	!=	twoHead)	{

7.	 								return	false;

8.	 					}

9.	 			}

10.	 			

11.	 			/*	We	exited	because	one	list	was	emptied.	If	the	other	list	has	elements	left	in	it,	then	they	must	have	been

of	different	sizes.	*/

12.	 			if	(!one.isEmpty()	||	!two.isEmpty())	{

13.	 					return	false;

14.	 			}

15.	 			return	true;

16.	 }

This	algorithm	takes	O(N)	time,	where	N	is	the	length	of	the	smaller	list.	Why
the	smaller?	Because	we	exit	as	soon	as	either	list	is	empty.	That	will	happen	to
the	smaller	 list	first.	It	doesn’t	matter	how	big	the	bigger	 list	 is;	 it	won’t	affect
the	runtime.

16.12	Write	a	function	to	remove	the	13th	element	from	a
queue	(but	keep	all	the	other	elements	in	place	and	in	the
same	order).

jump	to	question
The	 approach	 to	 this	 problem	 depends	 on	 what	 you	 assume	 the	 queue	 data
structure	supports.

If	we	get	access	to	a	Node	class,	then	this	is	fairly	easy.	We	just	iterate	through
the	nodes	and	delete	it	when	we	get	to	the	13th.

However,	if	it’s	a	true	Queue	class,	we	don’t	necessarily	have	access	to	the	nodes
like	this.	We	may	only	have	an	add	(to	the	back	of	the	list)	and	remove	(from	the
front	of	the	list)	method.

We	could	create	 a	 second	 list	object,	 but	 this	 isn’t	 actually	necessary.	Observe
that	 if	 we	 continuously	 remove	 elements	 from	 the	 front	 and	 add	 them	 to	 the
back,	we’ll	wind	up	with	the	exact	same	list.

To	remove	the	13th	element,	we	can	therefore	just	remove	each	element	and	re-
add	it—skipping	the	13th	element.

We’ve	 implemented	 this	 code	 using	 a	 variable	 k,	 rather	 than	 hard	 coding	 the
number	13.	This	is	generally	a	good	coding	practice.
	

1.	 boolean	remove(Queue<Integer>	queue,	int	k)	{

2.	 			if	(k	<	0	||	k	>=	queue.size())	{

3.	 					return	false;

4.	 			}

5.	 			

6.	 			int	size	=	queue.size();

7.	 			for	(int	i	=	0;	i	<	size;	i++)	{

8.	 					int	head	=	queue.remove();

9.	 					

10.	 					/*	everything	but	the	kth	element	*/

11.	 					if	(i	!=	k)	{	

12.	 								/*	remove	from	front	and	add	to	back	*/

13.	 								queue.add(head);

14.	 					}

15.	 			}

16.	 			return	true;

17.	 }

This	algorithm	takes	O(N)	time,	where	N	is	the	number	of	nodes.

16.13	Given	two	sorted	arrays,	write	a	function	to	merge
them	in	sorted	order	into	a	new	array.

jump	to	question
The	most	efficient	way	to	tackle	this	is	to	use	the	fact	that	the	arrays	are	sorted.
We	can	merge	them	by	taking	successive	elements	repeatedly	until	we	reach	the
end	of	both	arrays.	We	maintain	pointers	to	where	we	are	in	each	array	so	that
we	can	just	easily	move	onto	the	next	array.

Let’s	take	an	example	of	two	arrays.

A:	1	5	8	9					B:	2	4	9	10	12

	
We’ll	start	off	with	the	p	and	q	pointers	at	the	beginning	of	the	two	arrays:

A:	1	5	8	9					B:	2	4	9	10	12

			p														q

	
A[p]	is	smaller	than	A[q],	so	we	put	A[p]	into	our	result	array.	We	then	move	p
to	the	next	value.

A:	1	5	8	9					B:	2	4	9	10	12					

					p												q	

Result:	1

	
We	compare	A[p]	and	A[q]	again,	putting	the	smaller	element	into	the	resulting
array.	We	also	need	to	keep	track	of	where	we	are	in	the	result	array.	We	repeat
this	process	until	we	are	done	with	both	arrays.

A:	1	5	8	9					B:	2	4	9	10	12					

					p														q

Result:	1	2

	
A:	1	5	8	9					B:	2	4	9	10	12					

					p																q

Result:	1	2	4

						

A:	1	5	8	9					B:	2	4	9	10	12					

							p														q

Result:	1	2	4	5

	
A:	1	5	8	9					B:	2	4	9	10	12					

									p												q

Result:	1	2	4	5	8

	
A:	1	5	8	9					B:	2	4	9	10	12					

																						q

Result:	1	2	4	5	8	9

	
A:	1	5	8	9					B:	2	4	9	10	12					

																									q

Result:	1	2	4	5	8	9	9

	
A:	1	5	8	9					B:	2	4	9	10	12					

																												q

Result:	1	2	4	5	8	9	9	10

	
A:	1	5	8	9					B:	2	4	9	10	12					

																												

Result:	1	2	4	5	8	9	9	10	12

	
In	an	interview,	it’s	useful	 to	walk	through	the	example	in	this	detail	 to	reduce
the	number	of	mistakes	you	make.
	

1.	 int[]	mergeIntoNew(int[]	A,	int[]	B)	{

2.	 			int	p	=	0;

3.	 			int	q	=	0;

4.	 			int	index	=	0;

5.	 			int	sz	=	A.length	+	B.length;

6.	 			int[]	merged	=	new	int[sz];

7.	 			while	(p	<	A.length	||	q	<	B.length)	{

8.	 					if	(q	>=	B.length	||	A[p]	<=	B[q])	{

9.	 								merged[index]	=	A[p];

10.	 								p	=	p	+	1;

11.	 					}	else	{

12.	 								merged[index]	=	B[q];

13.	 								q	=	q	+	1;

14.	 					}

15.	 					index	=	index	+	1;

16.	 			}

17.	 			return	merged;

18.	 }

If	 you	wanted	 to	 reduce	 the	 number	 of	 pointers	we	 have,	we	 can	 remove	 the

index	variable.	It	will	always	be	equal	to	p	+	q.

This	code	takes	O(M+N)	time,	where	M	is	the	length	of	the	first	array	and	N	is
the	length	of	the	second.

16.14	Implement	insertion	sort.
jump	to	question

Insertion	sort	operates	by	 iterating	 through	 the	array,	 inserting	each	element	 in
order	on	the	element’s	left	side.

We	can	most	cleanly	implement	this	as	two	different	functions.

The	first	function	performs	the	overall	algorithm:	pick	up	an	element,	insert	it	in
order,	pick	up	the	next	one,	and	so	on.
	

1.	 void	insertionSort(int[]	array)	{

2.	 			/*	Pick	up	elements	starting	from	the	left	and	insert	them	into	the	left	in	order	*/

3.	 			for	(int	i	=	1;	i	<	array.length;	i++)	{

4.	 					insertInOrder(array,	i);

5.	 			}

6.	 }

Observe	that	our	for	loop	starts	at	1	instead	of	0.	This	is	because	the	0th	element
can	never	be	out	of	order,	by	itself.	(A	single	element	subarray	is	always	sorted.)

Now	we	 just	 need	 to	 implement	 a	method	 that	will	 take	 an	 element	A[k]	 and
insert	it	in	order	into	the	elements	to	the	left	of	it	(provided	those	are	sorted).

To	insert	A[k]	in	order,	we	will	need	to	shift	each	element	over	by	one,	until	we
find	the	right	spot	for	the	element.
	

1.	 void	insertInOrder(int[]	array,	int	index)	{

2.	 			//	store	element	into	temporary	value

3.	 			int	x	=	array[index];	

4.	 			index	=	index	-	1;

5.	 			

6.	 			while	(index	>=	0	&&	array[index]	>	x)	{

7.	 					//	shift	over	by	one

8.	 					array[index	+	1]	=	array[index];

9.	 					index	=	index	-	1;

10.	 			}

11.	 			

12.	 			//	insert	element

13.	 			array[index	+	1]	=	x;	

14.	 }

This	algorithm	will	take	O(N2)	time.

16.15	 Implement	 binary	 search.	 That	 is,	 given	 a	 sorted
array	 of	 integers	 and	 a	 value,	 find	 the	 location	 of	 that
value.

jump	to	question
Binary	search	works	by	repeatedly	“halving”	the	array	into	subarrays.	In	the	first
iteration,	we	compare	the	value	x	to	the	midpoint	and	learn	whether	x	will	be	in
the	left	half	or	the	right	half.	Then,	we	repeat	this	step	with	this	new	subarray:	is
x	found	on	the	left	half	of	it	(the	new	subarray)	or	the	right?

We	can	implement	 this	either	recursively	or	 iteratively	(non-recursively).	We’ll
start	with	the	recursive	solution	since	it’s	more	intuitive	for	most	people.
	

1.	 int	search(int[]	array,	int	x)	{

2.	 			return	search(array,	x,	0,	array.length	-	1);

3.	 }

4.	
5.	 int	search(int[]	array,	int	x,	int	left,	int	right)	{

6.	 			//	Not	found

7.	 			if	(right	<	left)	{	

8.	 					return	-1;

9.	 			}

10.	 			int	middle	=	(right	+	left)	/	2;

11.	 			if	(x	==	array[middle])	{

12.	 					return	middle;

13.	 			}	else	if	(x	<	array[middle])	{	

14.	 					//	x	is	on	left	hand>

15.	 					return	search(array,	x,	left,	middle	-	1);

16.	 			}	else	{	//	x	is	on	right	hand

17.	 					return	search(array,	x,	middle	+	1,	right);

18.	 			}

19.	 }

For	the	iterative	solution,	we	take	a	very	similar	approach.
	

1.	 int	search(int[]	array,	int	x)	{

2.	 			int	left	=	0;

3.	 			int	right	=	array.length	-	1;

4.	 			while	(left	<=	right)	{

5.	 					int	middle	=	(right	+	left)	/	2;

6.	 					if	(x	==	array[middle])	{

7.	 								return	middle;

8.	 					}

9.	 					if	(x	<	array[middle])	{

10.	 								right	=	middle	-	1;

11.	 					}	else	{

12.	 								left	=	middle	+	1;

13.	 					}

14.	 			}

15.	 			return	-1;

16.	 }

A	good	exercise	is	to	think	about	how	different	bits	of	logic	from	the	recursive
solution	 translates	 to	 the	 iterative	 solution.	For	example,	what	happened	 to	 the
check	on	line	6	of	the	recursive	solution?

16.16	You	 are	 given	 an	 integer	 array	which	was	 sorted,
but	then	rotated.	It	contains	all	distinct	elements.	Find	the
minimum	value.	For	example,	the	array	might	be	6,	8,	9,
11,	15,	20,	3,	4,	5.	The	minimum	value	would	obviously
be	3.

jump	to	question
A	brute	force	solution	would	be	to	just	iterate	through	the	array	and	look	for	the
minimum	value.	We	can	guess	that	this	isn’t	what	the	interviewer	is	looking	for

though,	since	it	doesn’t	use	the	sorting	information.

To	 come	 up	 with	 a	 more	 optimal	 solution,	 we	 probably	 want	 to	 use	 the
information	we’re	given—the	array	is	“sorted,”	but	rotated.

Since	 the	 array	 is	 somewhat	 sorted,	 let’s	 think	 about	 applying	 some	 of	 the
concepts	 from	 binary	 search.	 Binary	 search	works	 by	 looking	 at	 the	midpoint
repeatedly.

In	 this	 problem,	what	does	 the	midpoint	 tell	 us?	 In	 and	of	 itself,	 the	midpoint
being	15	doesn’t	tell	us	anything.	However,	if	we	know	that	the	left	side	is	6	and
the	right	side	is	5,	we	can	conclude	something.	Since	left	>	right,	we	know	that
the	array	is	out	of	order.	But	since	left	<	middle,	we	know	the	left	is	in	order	but
the	right	is	not.

6,	_,	_,	_,	15,	_,	_,	_,	5

	
From	 examining	 the	 above	 array,	 we	 can	 determine	 that	 the	 inflection	 point
(which	is	the	minimum	element)	is	on	the	right	half.	Our	problem	is	now	divided
in	half.

To	find	the	minimum	element,	we	now	just	recurse.

20,	_,	_,	5

20,	3

3

	
We	can	 implement	 this	 recursively.	We	 stop	when	we	 find	 that	 the	 left	 side	 is
less	 than	 the	right	side.	This	 indicates	 that	 this	portion	of	 the	array	 is	 in	order,
and	therefore	that	the	left	is	the	smallest	element.
	

1.	 int	findMin(int[]	array,	int	left,	int	right)	{

2.	 			/*	Items	are	in	order.	Therefore,	left	must	be	minimum.*/

3.	 			if	(array[left]	<=	array[right])	{

4.	 					return	left;

5.	 			}

6.	 			

7.	 			/*	Find	half	with	minimum	element.*/

8.	 			int	middle	=	(right	+	left)	/	2;

9.	 			if	(array[left]	>	array[middle])	{

10.	 					return	findMin(array,	left,	middle);

11.	 			}	else	{	//	middle	element	>	right	element

12.	 					return	findMin(array,	middle	+	1,	right);

13.	 			}

14.	 }

Alternatively,	we	can	implement	this	algorithm	iteratively	with	a	while	loop.
	

1.	 int	findMin(int[]	array)	{

2.	 			int	left	=	0;

3.	 			int	right	=	array.length	-	1;

4.	 			while	(array[left]	>	array[right])	{

5.	 					int	middle	=	(left	+	right)	/	2;

6.	 					if	(array[left]	>	array[middle])	{

7.	 								right	=	middle;

8.	 					}	else	{

9.	 								left	=	middle	+	1;

10.	 					}

11.	 			}

12.	 			return	left;

13.	 }

Be	 very	 careful	 in	 problems	 like	 this	 with	 your	 termination	 and	 recursion
conditions.	Think	about	 things	 like	why	you	make	 left	=	middle	+	1	 (why	 the
+1?)	but	right	=	middle.	Those	are	easy	places	to	make	mistakes.

16.17	Using	depth-first	search,	check	if	a	tree	contains	a
value.

jump	to	question
Depth-first	search	works	by	checking	if	a	value	v	is	equal	to	the	current	node’s
value.	If	it	is	not,	then	you	search	each	child	of	the	node,	one	by	one.

The	difference	between	depth-first	search	(DFS)	and	breadth-first	search	(BFS)
is	that	in	DFS,	the	entire	subtree	of	a	node’s	child	is	searched	before	you	move
on	to	any	of	the	node’s	other	children.	That	is,	all	of	node.child[0].children	will
be	searched	before	you	even	look	at	node.child[1].

We	can	implement	this	recursively.
	

1.	 boolean	depthFirstSearch(TreeNode	node,	int	x)	{

2.	 			if	(node	==	null)	{

3.	 					return	false;

4.	 			}	else	if	(node.data	==	x)	{

5.	 					return	true;

6.	 			}	else	{

7.	 					return	depthFirstSearch(node.left,	x)	||	depthFirstSearch(node.right,	x);

8.	 			}

9.	 }

Because	this	is	a	tree,	we	don’t	need	to	be	concerned	about	infinite	loops.	That
is,	we	don’t	need	to	be	concerned	about	traversing	through	node’s	children,	and
node’s	 “grandchildren,”	 and	 accidentally	 winding	 up	 back	 at	 node—to	 be
forever	 stuck	 in	 an	 infinite	 loop	 (yikes!).	 Trees	 specifically	 forbid	 cycles	 like
this.

If	this	weren’t	the	case—if	we	were	in	a	graph	instead	of	a	tree—we	would	have
to	use	an	isVisited	flag	to	indicate	that	we’ve	already	visited	this	node.

16.18	Write	the	pseudocode	for	breadth-first	search	on	a
binary	tree.	Try	to	be	as	detailed	as	possible.

jump	to	question
To	perform	breadth-first	search,	we	want	to	search	a	node	level	by	level.	That	is,
we	want	to	search	each	of	node’s	children	before	we	search	any	of	their	children.

Although	 breadth-first	 search	 is	 conceptually	 straightforward	 (just	 search	 a
node’s	children,	level	by	level),	implementing	it	can	be	a	little	less	intuitive.	The
main	trick	to	remember	is	that	we	need	to	use	a	queue.

A	queue,	as	you	might	recall,	 is	a	data	structure	that	allows	us	to	add	items	on
one	side	and	remove	them	from	the	other	side.	It	is	a	“first	in,	first	out”	(FIFO)
data	structure.	This	enables	us	to	basically	flag	nodes	“as	to	be	processed	later.”

In	BFS,	we	“visit”	a	node	by	comparing	the	value	we’re	searching	for	(x)	to	the
current	value.	 If	 it	matches,	we’re	done	and	can	 immediately	 return	 true.	Else,
then	we	add	node’s	children	to	the	end	of	the	queue.	We	then	move	on,	pulling	a
node	from	the	other	side	and	searching	it.
	

1.	 boolean	searchBFS(TreeNode	root,	int	x)	{

2.	 			Queue<TreeNode>	queue	=	new	LinkedList<TreeNode>();

3.	 			return	searchBFS(root,	x,	queue);

4.	 }

5.	
6.	 boolean	searchBFS(TreeNode	root,	int	x,	Queue<TreeNode>	queue)	{

7.	 			queue.add(root);

8.	 			while	(!queue.isEmpty())	{

9.	 					TreeNode	node	=	queue.remove();

10.	 					if	(node.data	==	x)	{

11.	 								return	true;

12.	 					}

13.	 					if	(node.left	!=	null)	{

14.	 								queue.add(node.left);

15.	 					}

16.	 					if	(node.right	!=	null)	{

17.	 								queue.add(node.right);

18.	 					}

19.	 			}

20.	 			return	false;

21.	 }

Because	 this	 is	 a	 tree,	we	 do	 not	 need	 to	worry	 about	winding	 up	 in	 a	 cycle.
However,	 if	 this	were	 not	 the	 case,	we	would	 need	 to	 use	 an	 isVisited	 flag	 to
ensure	we	don’t	revisit	the	same	node.

Breadth-first	 search	 takes	 O(N)	 time,	 where	 N	 is	 the	 number	 of	 nodes	 in	 the
graph	 (or	 tree).	This	 is	 because	we	might	 potentially	 need	 to	 search	 all	 of	 the
nodes.

16.19	 Design	 an	 algorithm	 and	 write	 code	 to	 find	 all
solutions	to	the	equation	a3	+	b3	=	c3	+	d3	where	a,	b,	c,
and	 d	 are	 positive	 integers	 less	 than	 1000.	 If	 you	wish,
you	 can	 print	 only	 “interesting”	 solutions.	 That	 is,	 you
can	ignore	solutions	of	 the	form	x3	+	y3	=	x3	+	y3	and
solutions	 that	are	 simple	permutations	of	other	 solutions

(swapping	 left	 and	 right	 hand	 sides,	 swapping	 a	 and	 b,
swapping	c	and	d).	For	example,	if	you	were	printing	all
solutions	 less	 than	 20,	 you	 could	 choose	 to	 print	 only
23	+	163	=	93	+	153	and	13	+	123	=	93	+	103.

jump	to	question
We	can	start	off	with	a	naive	solution.	We	just	iterate	through	all	possible	values
for	a,	b,	c,	and	d.	When	they	are	equal,	we	can	print	this	set.
	

1.	 void	cubes(int	max)	{

2.	 			for	(int	a	=	0;	a	<	max;	a++)	{

3.	 					int	acubed	=	a	*	a	*	a;

4.	 					for	(int	b	=	0;	b	<	max;	b++)	{

5.	 								int	bcubed	=	b	*	b	*	b;

6.	 								for	(int	c	=	0;	c	<	max;	c++)	{

7.	 											int	ccubed	=	c	*	c	*	c;

8.	 											for	(int	d	=	0;	d	<	max;	d++)	{

9.	 														int	dcubed	=	d	*	d	*	d;

10.	 														if	(acubed	+	bcubed	==	ccubed	+	dcubed)	{

11.	 																	String	solution	=	a	+	“,”	+	b	+	“,”	+	c	+	“,”	+	d;

12.	 																	System.out.println(solution);

13.	 														}

14.	 											}

15.	 								}

16.	 					}

17.	 			}

18.	 }

This	is	a	good	start.	Now,	how	can	we	make	it	faster?

We	can	get	some	minor	wins	by	“short	circuiting”—i.e.,	breaking	when	the	right
side	 is	 already	 too	 large.	 We	 can	 break	 from	 the	 c	 loop	 when	 a3	 +	 b3	 <	 c3.
(Surprisingly,	doing	an	equivalent	check	on	the	d	loop	doesn’t	save	us	any	time.
Yes,	we’d	be	breaking	early	from	the	innermost	loop	when	d	is	very	large.	But,
for	all	smaller	values	of	d,	we’re	running	an	extra	several	steps.)

We	can	also	 save	a	bit	of	 time	by	 removing	duplicates.	Consider	 the	 solutions

below,	all	of	which	are	essentially	equivalent:
	

1.	 3
3
	+	60

3
	=	22

3
	+	59

3

2.	 60
3
	+	3

3
	=	22

3
	+	59

3

3.	 3
3
	+	60

3
	=	59

3
	+	22

3

4.	 60
3
	+	3

3
	=	22

3
	+	59

3

5.	 22
3
	+	59

3
	=	3

3
	+	60

3

6.	 22
3
	+	59

3
	=	60

3
	+	3

3

7.	 59
3
	+	22

3
	=	3

3
	+	60

3

8.	 22
3
	+	59

3
	=	60

3
	+	3

3

Only	one	of	these	needs	to	be	printed.

We	can	cut	out	some	of	these	duplicates	by	forcing	a	<=	b	and	c	<=	d.	This	will
prevent	 us	 from	 printing	 pairs	 which	 are	 equivalent	 other	 than	 a	 and	 b	 being
swapped	or	c	and	d	being	swapped.

We	still	need	to	worry	about	the	left	and	right	side	being	swapped	though.	If	we
require	 a	 <	 c	 (this	will	 be	 true	 for	 exactly	 one	 of	 the	 two	 sets),	 then	we	will
remove	this	case	too.

We	can	handle	all	of	these	by	picking	the	appropriate	start	conditions	of	the	for
loops.	If	we	start	b	at	a,	then	b	will	always	be	greater	than	or	equal	to	a.	We	can
do	the	same	thing	for	c,	but	starting	it	a	+	1.	(Why	+1?	Because	if	c	=	a,	then	d	=
b.	The	result	a3	+	b3	=	a3	+	b3	isn’t	very	interesting.)

We	can	also	conclude	that	c	is	not	bigger	than	b.	This	is	because	a	<	b	and	c	<	d.
If	you	consider	the	equation	a3	+	b3	=	c3	+	d3.	It	would	be	impossible	for	both	of
the	left	values	to	be	less	than	both	of	the	right	values	and	still	have	the	left	and
right	sides	be	equal.
	

1.	 void	cubesBetter(int	max)	{

2.	 			for	(int	a	=	0;	a	<	max;	a++)	{

3.	 					int	acubed	=	a	*	a	*	a;

4.	 					for	(int	b	=	a;	b	<	max;	b++)	{

5.	 								int	bcubed	=	b	*	b	*	b;

6.	 								for	(int	c	=	a	+	1;	c	<	b;	c++)	{

7.	 											int	ccubed	=	c	*	c	*	c;

8.	 											if	(acubed	+	bcubed	<	ccubed)	break;

9.	 											for	(int	d	=	c;	d	<	max;	d++)	{

10.	 														int	dcubed	=	d	*	d	*	d;

11.	 														if	(acubed	+	bcubed	==	ccubed	+	dcubed)	{

12.	 																	String	sol	=	a	+	“,”	+	b	+	“,”	+	c	+	“,”	+	d;

13.	 																	System.out.println(sol);

14.	 														}

15.	 											}

16.	 								}

17.	 					}

18.	 			}

19.	 }

This	helps,	but	the	runtime	will	still	be	O(N4).	We	can	do	better.

Let’s	look	at	the	equation	we’re	given:	a3	+	b3	=	c3	+	d3.	Once	we’ve	determined	the
values	of	a,	b,	and	c,	there’s	only	one	possible	value	for	d.	The	only	question	is	if
that’s	an	integer	or	not.	So,	rather	than	iterating	through	all	possibilities	for	d,	we
can	just	check	if	the	resulting	d	value	is	an	integer.
	

1.	 void	cubes(int	max)	{

2.	 			for	(int	a	=	0;	a	<	max;	a++)	{

3.	 					int	acubed	=	a	*	a	*	a;

4.	 					for	(int	b	=	a;	b	<	max;	b++)	{

5.	 								int	bcubed	=	b	*	b	*	b;

6.	 								for	(int	c	=	a	+	1;	c	<	b;	c++)	{

7.	 											int	ccubed	=	c	*	c	*	c;

8.	 											if	(acubed	+	bcubed	<	ccubed)	break;

9.	 											/*	Compute	cubed	root	of	(a^3	+	b^3	+	c^3)	and	check	if	it’s	an	integer.*/

10.	 											int	d	=	(int)	Math.round(Math.pow((acubed	+	bcubed	-	ccubed),	1.0	/	3.0));

11.	 											if	(d	>=	c	&&	acubed	+	bcubed	==	ccubed	+	d	*	d	*	d)	{

12.	 														String	solution	=	a	+	“,”	+	b	+	“,”	+	c	+	“,”	+	d;

13.	 														System.out.println(solution);

14.	 											}

15.	 								}

16.	 					}

17.	 			}

18.	 }

This	is	O(N3).	This	is	better,	but	not	yet	optimal.

Let’s	 think	 about	what	 our	 algorithm	does.	The	 current	 approach	 is	 something
like	this:

for	each	pair	(a,	b)	where	a	<	1000	and	b	<	1000:

			compute	cubeAB	=	a^3	+	b^3

			find	pairs	(c,	d)	that	sum	to	cubeAB

	
For	 any	 given	 pair,	 we	 are	 iterating	 across	 all	 possible	 other	 pairs	 to	 see	 if
they’re	equal.

Instead,	 we	 can	 just	 group	 these	 pairs	 by	 sum.	 This	 requires	 just	 iterating
through	the	pairs	one	time.

As	we	 iterate	 through	 the	pairs,	we	create	a	mapping	 from	sum	->	pair	 (p,	q).
Then,	we	print	out	all	pairs	of	pairs	within	each	sum.	That	 is,	 if	we	find	pair1,
pair2,	pair3,	pair4—each	with	 a	 sum	of	 x—we	would	 print	 (pair1,	pair2),	 (pair1,
pair3),	(pair1,	pair4),	(pair2,	pair3),	(pair2,	pair4),	and	(pair3,	pair4).

Our	sum	->	pairs	mapping	might	look	something	like	this:

260245440	=	82
3
	+	638

3

																	=	144
3
	+	636

3

																																		

958595904	=	22
3
	+	986

3

																	=	180
3
	+	984

3

																	=	692
3
	+	856

3

																																		

8587000	=	46
3
	+	204

3

														=	120
3
	+	190

3

																										

95880024	=	102
3
	+	456

3

								=	228
3
	+	438

3

...

	
We	can	implement	this	with	a	hashtable,	representing	the	pair	(a,	b)	with	a	string
for	simplicity.
	

1.	 void	cubes(int	max)	{

2.	 			/*	Compute	pairs	for	each	sum.*/

3.	 			Hashtable<Integer,	ArrayList<String>>	map	=	computeSums(max);

4.	 			

5.	 			/*	Print	pairs	of	pairs.*/

6.	 			printSolutions(map);

7.	 }

8.	
9.	 /*	Create	map	from	each	possible	to	sum	to	all	pairs	that	give	this	sum.*/

10.	 Hashtable<Integer,	ArrayList<String>>	computeSums(int	max)	{

11.	 			Hashtable<Integer,	ArrayList<String>>	sums	=	new	Hashtable<Integer,	ArrayList<String>>();

12.	 			for	(int	a	=	0;	a	<	max;	a++)	{

13.	 					for	(int	b	=	a;	b	<	max;	b++)	{

14.	 								int	sum	=	a	*	a	*	a	+	b	*	b	*	b;

15.	 								String	solution	=	a	+	“,”	+	b;

16.	 								

17.	 								/*	Add	sum	->	pair	to	hashtable.*/

18.	 								if	(!sums.containsKey(sum))	{

19.	 											sums.put(sum,	new	ArrayList<String>());

20.	 								}

21.	 								ArrayList<String>	solutions	=	sums.get(sum);

22.	 								solutions.add(solution);

23.	 					}

24.	 			}

25.	 			return	sums;

26.	 }

27.	
28.	 /*	Print	all	pairs	that	sum	to	every	value.*/

29.	 void	printSolutions(Hashtable<Integer,	ArrayList<String>>	map)	{

30.	 			for	(int	sum	:	map.keySet())	{

31.	 					ArrayList<String>	solves	=	map.get(sum);

32.	 					printSolutionsForSum(solves);

33.	 			}

34.	 }

35.	
36.	 void	printSolutionsForSum(ArrayList<String>	solutions)	{

37.	 			for	(int	i	=	0;	i	<	solutions.size();	i++)	{

38.	 					for	(int	j	=	i	+	1;	j	<	solutions.size();	j++)	{

39.	 								String	sol	=	solutions.get(i)	+	“,”	+	solutions.get(j);

40.	 								System.out.println(sol);

41.	 					}

42.	 			}

43.	 }

This	solution	takes	O(N2)	time	where	N	is	max	size	of	a,	b,	c,	and	d.

16.20	Given	a	string,	print	all	permutations	of	that	string.
You	 can	 assume	 the	 word	 does	 not	 have	 any	 duplicate
characters.

jump	to	question
This	is	a	classic	recursion	problem.

Let’s	approach	this	with	an	example	that	we	build	from	the	bottom	up.

a	->	a

ab	->	ab,	ba

abc	->	abc,	acb,	bac,	bca,	cab,	cba

	
How	could	we	build	all	permutations	of	abcd	off	of	any	or	all	of	these	answers?

The	main	difference	is	the	presence	of	d.	If	we	have	all	permutations	of	abc,	we
could	“splice”	d	into	each	of	those	strings	(in	all	possible	ways).

abc	->	abc,	acb,	bac,	bca,	cab,	cba

												splice(abc,	d)	->	dabc	adbc	abdc	abcd

												splice(acb,	d)	->	dacb	adcb	acdb	acbd

												splice(bac,	d)	->	dbac	bdac	badc	bacd

												splice(bca,	d)	->	dbca	bdca	bcda	bcad

												splice(cab,	d)	->	dcab	cdab	cadb	cabd

												splice(cba,	d)	->	dcba	cdba	cbda	cbad

	
The	code	below	implements	this.
	

1.	 ArrayList<String>	permutations(String	word)	{

2.	 			/*	Base	case:	word	is	empty.*/

3.	 			if	(word.length()	==	0)	{

4.	 					ArrayList<String>	list	=	new	ArrayList<String>();

5.	 					list.add(word);

6.	 					return	list;

7.	 			}

8.	 			

9.	 			/*	Remove	last	char	and	get	permutations	of	remainder.*/

10.	 			String	lastChar	=	word.substring(word.length()	-	1);

11.	 			String	remainder	=	word.substring(0,	word.length()	-	1);

12.	 			ArrayList<String>	list	=	permutations(remainder);

13.	 			ArrayList<String>	result	=	new	ArrayList<String>();

14.	 			

15.	 			/*	Go	through	all	permutations	of	the	substring,	splicing	lastChar	into	it.*/

16.	 			for	(String	part	:	list)	{

17.	 					/*	Splice	lastChar	into	all	possible	positions.*/

18.	 					for	(int	i	=	0;	i	<	part.length();	i++)	{

19.	 								String	left	=	part.substring(0,	i);

20.	 								String	right	=	part.substring(i);

21.	 								String	spliced	=	left	+	lastChar	+	right;

22.	 								result.add(spliced);

23.	 					}

24.	 					

25.	 					/*	Also	splice	into	end.	*/

26.	 					result.add(partial	+	lastChar);

27.	 			}

28.	 			

29.	 			return	result;

30.	 }

This	algorithm	will	take	O(N!)	time	(where	N	is	the	number	of	characters	in	the
string)	since	there	are	N!	permutations.

We	 can’t	 optimize	 this	 algorithm,	 but	 there	 is	 another	 approach.	 This	 is	 less
intuitive	for	many	people.

If	we	have	the	string	abcd,	we	can	build	it	from	subresults	as	follows:

perms(abcd)	=	{a	+	perms(bcd)}

											+	{b	+	perms(acd)}

											+	{c	+	perms(abd)}

											+	{d	+	perms(abc)}

	
That	is,	we	remove	each	character	and	permute	the	remaining.	Then,	we	prepend
the	removed	character	to	each	permutation.

Rather	 than	prepending	each	character	 to	 its	“subpermutations,”	we	can	 let	 the
subpermutation	 handle	 this.	 The	 permutations	 function	 gets	 a	 prefix	 string,
which	represents	what	currently	needs	to	be	prepended,	and	permutes	the	rest.
	

1.	 void	permutations(String	word,	String	prefix)	{

2.	 			/*	Our	prefix	is	fully	built.	Print	it.*/

3.	 			if	(word.length()	==	0)	{

4.	 					System.out.println(prefix);

5.	 			}

6.	 			

7.	 			/*	Remove	each	character.	Permute	the	remainder,	passing	along	the	prefix.*/

8.	 			for	(int	i	=	0;	i	<	word.length();	i++)	{

9.	 					char	c	=	word.charAt(i);

10.	 					String	left	=	word.substring(0,	i);

11.	 					String	right	=	word.substring(i	+	1);

12.	 					permutations(left	+	right,	c	+	prefix);

13.	 			}

14.	 }

Like	the	earlier	approach,	this	is	O(N!).

16.21	 In	 a	 group	 of	 people,	 a	 person	 is	 called	 a
“celebrity”	if	everyone	knows	them	but	they	know	no	one
else.	You	are	given	a	function	knows(a,	b)	which	tells	you
if	person	a	knows	person	b.	Design	an	algorithm	to	find
the	celebrity	(if	one	exists).

For	 simplicity,	 you	can	assume	 that	 everyone	 is	given	a
label	from	0	to	N-1.	You	need	to	implement	a	function	int
findCelebrity(int	N).

Observe	that:
	

1.	 There	 can	 only	 be	 one	 celebrity	 at	most	 (due	 to	 the
definition	of	a	celebrity).

2.	 The	knows	 function	 is	 the	 only	way	 to	 look	 up	who
knows	who.

jump	to	question
Let’s	start	with	a	simple	brute	force	approach.	We	can	iterate	through	all	possible
people,	checking	if	this	person	is	a	celebrity.	As	soon	as	we	find	a	person	who
fits	the	criteria	of	being	a	celebrity,	we	can	return	this	person.
	

1.	 int	findCelebrity(int	people)	{

2.	 			for	(int	i	=	0;	i	<	people;	i++)	{

3.	 					if	(isCelebrity(people,	i))	{

4.	 								return	i;

5.	 					}

6.	 			}

7.	 			return	-1;

8.	 }

9.	 boolean	isCelebrity(int	people,	int	candidate)	{

10.	 			for	(int	i	=	0;	i	<	people;	i++)	{

11.	 					if	(i	!=	candidate)	{

12.	 								if	(knows(candidate,	i)	||	!knows(i,	candidate))	{

13.	 											return	false;

14.	 								}

15.	 					}

16.	 			}

17.	 			return	true;

18.	 }

This	takes	O(N2)	time	since	we	are	potentially	calling	knows(a,	b)	on	every	pair
of	people.

Let’s	see	if	we	can	do	this	faster.

Consider	a	call	to	knows	for	two	people,	x	and	y.	The	result	of	knows(x,	y)	will
either	be	true	or	false.	What	can	we	conclude	from	these	results?
	

Suppose	knows(x,	y)	=	 true.	This	means	 that	x	knows	y.	 In	 this	 case,	we
know	that	x	is	not	a	celebrity.	Celebrities	can’t	know	anybody.
Suppose	knows(x,	 y)	=	 false.	This	means	 that	 x	 does	not	 know	y.	 In	 this
case,	 we	 know	 that	 y	 is	 not	 a	 celebrity	 since	 everyone	 must	 know	 the
celebrity.

This	 gives	 us	 a	 very	 interesting	 learning:	 given	 two	 people	 who	 are	 both
potential	celebrities,	we	can	always	eliminate	one	person	as	the	celebrity.

Note:	 Now	 is	 a	 good	 time	 to	 pause	 to	 try	 to	 figure	 out	 the	 rest	 of	 the
solution.

If	we	can	always	eliminate	one	person	as	the	celebrity,	then	we	should	be	able	to
trim	 down	 our	 list	 of	 N	 people	 to	 just	 one	 potential	 celebrity	 in	 N-1	 calls	 to
knows.	At	 that	 point,	we	 can	 then	 verify	 that	 candidate	 really	 is	 the	 celebrity
(since	 there	 could	 be	 no	 celebrities)	 by	 calling	 knows	 again	 for	 candidate	 and
every	other	person.

This	can	be	done	in	two	passes:
	

1.	 Find	the	candidate.
2.	 Verify	that	the	candidate	is	the	celebrity.

Before	diving	into	the	code,	let’s	think	about	how	we	implement	the	first	pass:
finding	the	candidate.

We	could	have	a	list	that	we	remove	people	from	as	they	are	eliminated.	Shifting
elements	 around	 in	 a	 list	 is	 time	 consuming	 and,	 frankly,	 more	 work	 than
necessary.

If	we	imagine	our	calls	 to	knows,	we	can	think	about	our	algorithm	as	kicking
things	 off	 with	 0	 as	 the	 candidate.	When	we	 call	 knows(0,	 1),	 we	will	 either
eliminate	0	or	1.	If	we	eliminate	0,	then	candidate	becomes	1.	We	then	move	on
to	knows(candidate,	2).

Step	2	uses	the	same	isCelebrity	method	that	we	implemented	earlier.
	

1.	 int	findCelebrity(int	people)	{

2.	 			int	candidate	=	findCandidate(people);

3.	 			if	(isCelebrity(people,	candidate))	{

4.	 					return	candidate;

5.	 			}

6.	 			return	-1;

7.	 }

8.	

9.	 int	findCandidate(int	people)	{

10.	 			int	candidate	=	0;

11.	 			for	(int	i	=	0;	i	<	people;	i++)	{

12.	 					/*	If	candidate	gets	ruled	out,	move	on	to	i.*/

13.	 					if	(knows(candidate,	i))	{

14.	 								candidate	=	i;

15.	 					}

16.	 			}

17.	 			return	candidate;

18.	 }

19.	
20.	 boolean	isCelebrity(int	people,	int	candidate)	{

21.	 			for	(int	i	=	0;	i	<	people;	i++)	{

22.	 					if	(i	!=	candidate)	{

23.	 								if	(knows(candidate,	i)	||	!knows(i,	candidate))	{

24.	 											return	false;

25.	 								}

26.	 					}

27.	 			}

28.	 			return	true;

29.	 }

This	algorithm	takes	O(N)	time.

16.22	You	have	an	NxN	matrix	of	characters	and	a	list	of
valid	words	 (provided	 in	any	 format	you	wish).	A	word
can	 be	 formed	 by	 starting	 with	 any	 character	 and	 then
moving	up,	down,	left,	or	right.	Words	do	not	have	to	be
in	a	straight	line	(PACKING	is	a	word	below).	You	cannot
reuse	a	 letter	 for	 the	same	word,	so	GOING	 (in	 the	grid
below)	would	not	be	a	word	since	it	reuses	the	G.	Design
an	algorithm	and	write	code	to	print	all	valid	words.

L	I	G	O

E	P	N	I

N	A	C	K

S	M	A	R

	

jump	to	question
Let’s	think	about	this	algorithm	step	by	step.	We	need	to	find	all	words	that	start
with	each	letter.	We	can	just	iterate	through	each	letter	on	the	grid,	kicking	off	a
search	for	words	that	start	with	each	letter.

But	how	do	we	find	all	words	that	start	with	a	particular	letter,	like	P?

From	P,	we	 can	move	 either	 up,	 down,	 left,	 or	 right.	 This	means	 that	we	 can
think	about	all	words	that	start	with	P	in	the	grid	as	being:

all	words	that	start	with	P	=

							all	words	that	start	with	PI

					+	all	words	that	start	with	PE

					+	all	words	that	start	with	PA

					+	all	words	that	start	with	PN

	
This	 leads	 to	 a	 natural	 recursive	 algorithm.	We	 recurse	 in	 each	 direction	 (up,
down,	left,	and	right),	building	a	word	as	we	go.	Whenever	we	have	a	complete
word,	we	print	it	and	continue	with	the	recursion.

One	tricky	part	 is	how	we	prevent	ourselves	from	reusing	a	letter	for	 the	same
word.	 There	 are	 a	 number	 of	 solutions	 for	 this,	 but	 all	 take	 the	 same	 general
approach	of	marking	a	 character	 as	being	“in	use”	while	we	 traverse	down	 its
path.	Afterwards,	we	unmark	it	so	we	can	use	it	again.

We	have	used	a	boolean	array	to	do	this.	Before	we	traverse	to	a	cell’s	neighbors,
we	 mark	 this	 cell	 as	 being	 taken.	 After	 we’re	 done,	 we	 mark	 it	 as	 available
again.

We	can	also	perform	an	optimization	 in	short	circuiting	early	 in	our	 recursion.
Imagine	we	have	built	 the	 string	PNCKR.	That’s	 certainly	not	 the	 start	of	 any
valid	word	in	our	dictionary,	so	why	continue	recursing	down	this	path?

If	we	implement	the	dictionary	as	a	trie,	we	can	have	a	function	that	tells	us	if	a
string	is	a	substring	of	a	valid	word	in	the	dictionary.	A	trie	is	special	type	of	tree
generally	used	for	storing	lists	of	words.	It	gives	very	efficient	runtime	to	call	an
isPrefix	method.

For	this	algorithm,	we	can	use	isPrefix	to	terminate	the	recursion	if	we	are	on	an
invalid	string.
	

1.	 /*	Find	all	words	on	board	by	finding	all	words	that	start	with	each	character	on	the	board.*/

2.	 void	boggle(char[][]	board)	{

3.	 			boolean[][]	marked	=	new	boolean[board.length][board[0].length];

4.	 			for	(int	i	=	0;	i	<	board.length;	i++)	{

5.	 					for	(int	j	=	0;	j	<	board[0].length;	j++)	{

6.	 								boggle(board,	i,	j,	“”,	marked);

7.	 					}

8.	 			}

9.	 }

10.	
11.	 /*	Find	all	words	that	start	with	prefix	and	use	the	character	at	row,	col.*/

12.	 void	boggle(char[][]	board,	int	row,	int	col,	String	prefix,	boolean[][]	marked)	{

13.	 			/*	Check	that	char	is	on	board	and	not	currently	in	use.*/

14.	 			if	(!inBounds(board,	row,	col)	||	marked[row][col])	{

15.	 					return;

16.	 			}

17.	 			

18.	 			/*	Append	character	to	current	word.*/

19.	 			prefix	=	prefix	+	board[row][col];

20.	 			

21.	 			/*	If	there	are	no	words	starting	with	this	prefix,	return.*/

22.	 			if	(!isValidPrefix(prefix))	{

23.	 					return;

24.	 			}

25.	 			

26.	 			/*	Found	a	word.	Print	it.*/

27.	 			if	(isValidWord(prefix))	{

28.	 					System.out.println(prefix);

29.	 			}

30.	 			

31.	 			/*	Mark	character	as	in	use.*/

32.	 			marked[row][col]	=	true;

33.	 			

34.	 			/*	Traverse	each	of	its	neighbors.*/

35.	 			boggle(board,	row	-	1,	col,	prefix,	marked);	//	Go	up

36.	 			boggle(board,	row,	col	+	1,	prefix,	marked);	//	Go	right

37.	 			boggle(board,	row	+	1,	col,	prefix,	marked);	//	Go	down

38.	 			boggle(board,	row,	col	-	1,	prefix,	marked);	//	Go	left

39.	 			

40.	 			/*	We	are	done	traversing	its	neighbors	and	will	now	return	to	its	parent.	Mark	this	cell	as	available

again.*/

41.	 			marked[row][col]	=	false;

42.	 }

43.	
44.	 /*	Check	if	row,	col	is	in	bounds.*/

45.	 boolean	inBounds(char[][]	board,	int	row,	int	col)	{

46.	 			if	(row	<	0	||	col	<	0	||	row	>=	board.length	||	col	>=	board[row].length)	{

47.	 					return	false;

48.	 			}

49.	 			return	true;

50.	 }

Describing	the	runtime	of	this	algorithm	is	a	bit	tricky	because	it	really	depends
on	what	the	board	and	the	English	language	is	like.	If	many	paths	are	valid	(that
is,	 the	words	 form	valid	prefixes),	 then	 it	will	be	much	 slower	 than	 if	 a	 lot	of
paths	are	not	valid.

If	we	didn’t	do	the	isPrefix	check,	we	would	traverse	through	N2	characters,	For
each	 character,	 we	 would	 move	 in	 four	 possible	 directions	 the	 first	 time	 and
three	after	that.	A	path	could	be	as	long	as	N2	(the	number	of	characters),	so	the
number	of	all	possible	paths	starting	from	a	given	character	is	O(4*3(N^2)).	This
give	us	a	time	of	O(N2*4*3(N^2)),	which	reduces	to	O(N2*3(N^2)).

Realistically,	given	the	trie	and	the	pattern	of	letters	in	the	English	language,	it
will	be	much	faster	than	that.

16.23	Given	an	array	of	integers	(with	both	positive	and
negative	 values),	 find	 the	 contiguous	 sequence	with	 the
largest	sum.	Return	just	the	sum.

Example:
Input:	2,	-8,	3,	-2,	4,	-10
Output:	5	(i.e.,	{3,	-2,	4})

jump	to	question
Let’s	start	off	with	a	brute	force	and	see	how	we	can	optimize	it.

Brute	Force
We	 could	 iterate	 through	 all	 possible	 subsequences,	 comparing	 their	 sum	 to	 a
maximum	sum.	At	the	end,	we	return	the	biggest	we	have	seen.
	

1.	 int	getMaxSum(int[]	a)	{

2.	 			int	maxSum	=	0;

3.	 			for	(int	left	=	0;	left	<	a.length;	left++)	{

4.	 					for	(int	right	=	left	+	1;	right	<	a.length;	right++)	{

5.	 								int	sum	=	0;

6.	 								

7.	 								/*	Add	all	values	between	*/

8.	 								for	(int	i	=	left;	i	<=	right;	i++)	{

9.	 											sum	+=	a[i];

10.	 								}

11.	 								

12.	 								if	(sum	>	maxSum)	{

13.	 											maxSum	=	sum;

14.	 								}

15.	 					}

16.	 			}

17.	 			return	maxSum;

18.	 }

19.	

This	is	O(N3).	We	can	do	better!

Brute	Force	(Optimized)
Since	 each	 subsequence	 can	 be	 uniquely	 described	with	 a	 start	 point	 and	 end
point,	we	know	that	there	are	roughly	O(N2)	subsequences	of	an	array.	And	yet,
our	 earlier	 algorithm	 is	 taking	O(N3)	 time.	This	 suggests	we	might	 be	 able	 to
optimize	this.

Let’s	 consider	 what	 the	 innermost	 for	 loop	 (the	 i	 loop)	 is	 doing.	 It’s	 just
computing	 the	 sum	 of	 all	 the	 elements	 between	 left	 and	 right.	 We	 have	 just
finished	computing	(in	the	prior	iteration	of	the	right	loop)	the	sum	of	everything
between	left	and	right	-	1.

Instead	 of	 recomputing	 the	 sum	 every	 time,	we	 can	 just	 keep	 a	 running	 sum.
When	right	goes	to	the	next	iteration,	we	just	add	a[right]	to	the	running	sum.
	

1.	 int	getMaxSumBF(int[]	a)	{

2.	 			int	maxSum	=	0;

3.	 			for	(int	left	=	0;	left	<	a.length;	left++)	{

4.	 					int	runningSum	=	0;

5.	 					for	(int	right	=	left;	right	<	a.length;	right++)	{

6.	 								runningSum	+=	a[right];

7.	 								if	(runningSum	>	maxSum)	{

8.	 											maxSum	=	runningSum;

9.	 								}

10.	 					}

11.	 			}

12.	 			return	maxSum;

13.	 }

We’re	now	down	to	O(N2)	time.	This	is	better,	but	we’re	still	essentially	doing	a
brute	force	solution.

Optimized
Let’s	inspect	what	this	last	solution	did	at	a	deeper	level.

2,	-4,	4,	-3,	2,	5,	-1,	-4,	-5,	-2,	-1,	2
We	 moved	 through	 all	 possible	 subsequences.	 That	 includes,	 for	 example,
subsequences	 that	 include	 the	 first	 two	values	 (2	and	 -4).	Why	would	we	ever
want	a	subsequence	that	starts	with	{2,	-4}?	Their	sum	is	-2,	which	means	that
they	will	only	make	a	subsequence’s	sum	smaller.

We	do	 sometimes	want	negative	values	 in	 the	subsequence,	but	only	when	 the
negative	value	can	join	bigger	values	on	both	sides.

This	leads	us	to	a	useful	insight:	whenever	a	subsequence	is	negative,	we	know
we	won’t	want	to	include	it.

Let’s	fix	up	our	code	to	break	early	when	runningSum	goes	negative,	so	that	we
can	then	try	the	next	value	of	left.
	

1.	 int	getMaxSum(int[]	a)	{

2.	 			int	maxSum	=	0;

3.	 			for	(int	left	=	0;	left	<	a.length;	left++)	{

4.	 					int	runningSum	=	0;

5.	 					for	(int	right	=	left;	right	<	a.length;	right++)	{

6.	 								runningSum	+=	a[right];

7.	 								if	(runningSum	>	maxSum)	{

8.	 											maxSum	=	runningSum;

9.	 								}	else	if	(runningSum	<	0)	{

10.	 											break;

11.	 								}

12.	 					}

13.	 					return	maxSum;

14.	 			}

15.	 }

With	this	change,	we	now	break	as	soon	as	we	get	past	{2,	-4}.	Left	will	move
on	to	point	to	-4,	and	then	to	4	after	that.

We’ll	 continue	 moving	 right	 until	 runningSum	 becomes	 negative.	 When
runningSum	is	bigger	than	maxSum,	we’ll	update	maxSum.

When	does	runningSum	become	negative?	Let’s	walk	through	it.

left:							4

right:						4	|	-3	|	2	|	5	|	-1	|	-4	|	-5	|	...

runningSum:	4	|		1	|	3	|	8	|		7	|		3	|	-2	|

maxSum:														8

	
We	break	when	right	is	pointing	to	-5.	We	have	now	definitely	found	the	largest
subsequence	that	starts	at	left.

Observe	 that,	 up	 until	 that	 point,	 the	 sum	 of	 the	 values	 between	 left	 and	 any
point	x	was	greater	than	or	equal	to	0.	In	other	words:

sum(array[left],	array[left	+	1],	...,	array[x-1])	>	0

	
Imagine	 a	 subsequence	 starting	 at	 x	 and	 continue	 to	 anywhere	 in	 the	 array.	 If
sum(array[left],	array[left	+	1],	...,	array[x-1])	>	0,	then	any	subsequence	starting
at	x	could	be	made	larger	by	instead	starting	it	at	left.	It	is,	therefore,	less	optimal
to	start	at	x.

Thus,	 we	 haven’t	 just	 found	 the	 largest	 subsequence	 that	 starts	 at	 left.	We’ve
found	the	largest	subsequence	that	starts	anywhere	between	left	and	right.

We	should	now	just	move	left	over	to	right	+	1.

This	brings	us	to	a	new	algorithm:
	

1.	 Start	left	and	right	at	the	far	left	side.
2.	Move	right	until	runningSum	becomes	negative.

Track	runningSum	and	maxSum	along	the	way.

3.	When	runningSum	becomes	negative,	move	left	over
to	right	+	1	and	reset	runningSum.

	

1.	 int	getMaxSum(int[]	a)	{

2.	 			int	maxSum	=	0;

3.	 			int	runningSum	=	0;

4.	 			int	left	=	0;

5.	 			for	(int	right	=	0;	right	<	a.length;	right++)	{

6.	 					runningSum	+=	a[right];

7.	 					if	(runningSum	<	0)	{

8.	 								left	=	right	+	1;

9.	 								runningSum	=	0;

10.	 					}

11.	 					if	(maxSum	<	runningSum)	{

12.	 								maxSum	=	runningSum;

13.	 					}

14.	 			}

15.	 			return	maxSum;

16.	 }

If	you	 look	carefully,	you	might	notice	 that	 left	 is	 set	but	never	 actually	used.
Therefore,	we	can	implement	the	code	without	it.
	

1.	 int	getMaxSum(int[]	a)	{

2.	 			int	maxSum	=	0;

3.	 			int	runningSum	=	0;

4.	 			for	(int	right	=	0;	right	<	a.length;	right++)	{

5.	 					runningSum	+=	a[right];

6.	 					if	(maxSum	<	runningSum)	{

7.	 								maxSum	=	runningSum;

8.	 					}	else	if	(runningSum	<	0)	{

9.	 								runningSum	=	0;

10.	 					}

11.	 			}

12.	 			return	maxSum;

13.	 }

At	this	point,	we	know	that	we’re	done	optimizing.	This	code	runs	in	O(N)	time
and	 computes	 the	 longest	 sequence	 in	 a	 single	 pass	 of	 the	 array.	We	 can’t	 do
better	than	that.

Appendix
	
	

This	 appendix	 includes	 a	variety	of	 resources	 to	help	you	 in	your	preparation.
For	additional	resources,	or	to	discuss	questions	with	fellow	PMs,	please	check
out	CrackingThePMInterview.com.

Ian	McAllister:	Top	1%	PMs	vs.	Top	10%	PMs
Ian	 McAllister	 (@ianmcall)	 started	 and	 leads	 the	 AmazonSmile	 program.	 He
manages	product	management,	software	development,	and	UX	design	teams,	and
also	does	business	development.	Previously,	he	ran	Amazon’s	world-wide	gifting
business	and	worked	as	a	program	manager	for	Microsoft.
	
What	distinguishes	 the	 top	 1%	of	 product	managers
from	the	top	10?
The	 top	10%	of	product	managers	 excel	 at	 a	 few	of	 these	 things.	The	 top	1%
excel	at	most	or	all	of	them:
	

Think	 big	 -	 A	 1%	 PM’s	 thinking	won’t	 be	 constrained	 by	 the	 resources
available	 to	 them	 today	 or	 today’s	 market	 environment.	 They’ll	 describe
large	disruptive	opportunities,	and	develop	concrete	plans	 for	how	 to	 take
advantage	of	them.
Communicate	-	A	1%	PM	can	make	a	case	that	is	impossible	to	refute	or
ignore.	They’ll	use	data	appropriately,	when	available,	but	 they’ll	also	 tap
into	other	biases,	beliefs,	and	triggers	that	can	convince	the	powers	that	be
to	part	with	headcount,	money,	or	other	 resources	and	 then	get	out	of	 the
way.
Simplify	-	A	1%	PM	knows	how	to	get	80%	of	the	value	out	of	any	feature
or	project	with	20%	of	 the	 effort.	They	do	 so	 repeatedly,	 launching	more
and	achieving	compounding	effects	for	the	product	or	business.
Prioritize	-	A	1%	PM	knows	how	to	sequence	projects.	They	balance	quick
wins	 vs.	 platform	 investments	 appropriately.	 They	 balance	 offense	 and
defense	 projects	 appropriately.	 Offense	 projects	 are	 ones	 that	 grow	 the
business.	 Defense	 projects	 are	 ones	 that	 protect	 and	 remove	 drag	 on	 the
business	(operations,	reducing	technical	debt,	fixing	bugs,	etc.).
Forecast	 and	measure	 -	 A	 1%	 PM	 is	 able	 to	 forecast	 the	 approximate
benefit	of	a	project,	and	can	do	so	efficiently	by	applying	past	experience
and	 leveraging	 comparable	 benchmarks.	 They	 also	 measure	 benefit	 once
projects	 are	 launched,	 and	 factor	 those	 learnings	 into	 their	 future
prioritization	and	forecasts.
Execute	 -	A	1%	PM	grinds	it	out.	They	do	whatever	 is	necessary	to	ship.
They	recognize	no	specific	bounds	to	the	scope	of	their	role.	As	necessary,

they	recruit,	they	produce	buttons,	they	do	bizdev,	they	escalate,	they	tussle
with	internal	counsel,	they	*.
Understand	technical	trade-offs	-	A	1%	PM	does	not	need	to	have	a	CS
degree.	 They	 do	 need	 to	 be	 able	 to	 roughly	 understand	 the	 technical
complexity	 of	 the	 features	 they	 put	 on	 the	 backlog,	 without	 any	 costing
input	from	devs.	They	should	partner	with	devs	to	make	the	right	technical
trade-offs	(i.e.	compromise).
Understand	good	design	 -	A	 1%	PM	doesn’t	 have	 to	 be	 a	 designer,	 but
they	should	appreciate	great	design	and	be	able	to	distinguish	it	from	good
design.	They	should	also	be	able	to	articulate	the	difference	to	their	design
counterparts,	or	at	 least	articulate	directions	 to	pursue	 to	go	 from	good	 to
great.
Write	effective	copy	-	A	1%	PM	should	be	able	to	write	concise	copy	that
gets	 the	 job	done.	They	should	understand	 that	each	additional	word	 they
write	 dilutes	 the	value	of	 the	previous	ones.	They	 should	 spend	 time	 and
energy	 trying	 to	 find	 the	 perfect	 words	 for	 key	 copy	 (button	 labels,	 nav,
calls-to-action,	etc.),	not	just	words	that	will	suffice.

I’m	not	sure	I’ve	ever	met	a	1%	PM,	certainly	not	one	that	I	identified	as	such
prior	 to	 hiring.	 Instead	 of	 trying	 to	 hire	 one,	 you’re	 better	 off	 trying	 to	 hire	 a
10%	PM	who	strives	to	develop	and	improve	along	these	dimensions.

This	 essay	 originally	 appeared	 on	 http://www.quora.com/Product-
Management/What-distinguishes-the-Top-1-of-Product-Managers-from-the-Top-
10/answer/Ian-McAllister.

Adam	Nash:	Be	a	Great	Product	Leader
Adam	Nash	 is	 the	Chief	Operating	Officer	 at	Wealthfront.	 Before	Wealthfront,
Adam	 served	 as	 an	 Executive	 in	 Residence	 at	 Greylock	 Partners,	 where	 he
advised	 the	 leadership	 teams	 of	 the	 firm’s	 existing	 consumer	 technology
companies	as	well	as	evaluating	new	investment	opportunities.	Prior	to	joining
Greylock,	Adam	was	Vice	President	of	Product	Management	at	LinkedIn.
People	 who	 know	me	 professionally	 know	 that	 I’m	 passionate	 about	 Product
Management.	I	truly	believe	that,	done	properly,	a	strong	product	leader	acts	as	a
force	multiplier	that	can	help	a	cross-functional	team	of	great	technologies	and
designers	do	their	best	work.

Unfortunately,	the	job	description	of	a	product	manager	tends	to	either	be	overly
vague	(you	are	responsible	for	the	product)	or	overly	specific	(you	write	product
specifications).	Neither,	as	it	 turns	out,	 is	 it	effective	in	helping	people	become
great	product	managers.

I’ve	spent	a	lot	of	time	trying	to	figure	out	a	way	to	communicate	the	value	of	a
product	manager	in	a	way	that	both	transparently	tells	cross-functional	partners
what	 they	 should	 expect	 (or	 demand)	 from	 their	 product	 leaders,	 and	 also
communicates	to	new	product	managers	what	the	actual	expectations	of	their	job
are.	 Over	 the	 years,	 I	 reduced	 that	 communication	 to	 just	 three	 sets	 of
responsibilities:	Strategy,	Prioritization	&	Execution.

Responsibility	#1:	Product	Strategy
They	 teach	 entire	 courses	 on	 strategy	 at	 top	 tier	 business	 schools.	 I	 doubt,
however,	that	you’ll	hear	Product	Strategy	discussed	in	this	way	in	any	of	them.

Quite	simply,	it’s	the	product	manager’s	job	to	articulate	two	simple	things:
	

What	game	are	we	playing?
How	do	we	keep	score?

Do	these	two	things	right,	and	all	of	a	sudden	a	collection	of	brilliant	individual
contributors	 with	 talents	 in	 engineering,	 operations,	 quality,	 design	 and
marketing	 will	 start	 running	 in	 the	 same	 direction.	 Without	 it,	 no	 amount	 of
prioritization	or	 execution	management	will	 save	 you.	Building	great	 software

requires	a	variety	of	talents,	and	key	innovative	ideas	can	come	from	anywhere.
Clearly	 describing	 the	 game	 your	 playing	 and	 the	 metrics	 you	 use	 to	 judge
success	 allows	 the	 team,	 independent	 of	 the	 product	manager,	 to	 sort	 through
different	ideas	and	decide	which	ones	are	worth	acting	on.

Clearly	defining	what	game	you	are	playing	includes	your	vision	for	the	product,
the	 value	 you	 provide	 your	 customer,	 and	 your	 differentiated	 advantage	 over
competitors.	More	important,	however,	is	that	it	clearly	articulates	the	way	that
your	 team	 is	 going	 to	 win	 in	 the	 market.	 Assuming	 you	 pick	 your	 metrics
appropriately,	 everyone	on	 the	 team	 should	have	 a	 clear	 idea	of	what	winning
means.

You	should	be	able	to	ask	any	product	manager	who	has	been	on	the	job	for	two
weeks	these	questions,	and	get	not	just	a	crisp,	but	a	compelling	answer	to	these
two	questions.

The	result:	aligned	effort,	better	motivation,	innovative	ideas,	and	products	that
move	the	needle.

Responsibility	#2:	Prioritization
Once	 the	 team	 knows	 what	 game	 they	 are	 playing	 and	 how	 to	 keep	 score,	 it
tends	to	make	prioritization	much	easier.	This	is	the	second	set	of	responsibilities
for	 a	 product	 manager—ensuring	 that	 their	 initial	 work	 on	 their	 strategy	 and
metrics	is	carried	through	to	the	phasing	of	projects	/	features	to	work	on.

At	 any	 company	with	 great	 talent,	 there	will	 be	 a	 surplus	 of	 good	 ideas.	 This
actually	 doesn’t	 get	 better	 with	 scale,	 because	 as	 you	 add	 more	 people	 to	 a
company	they	tend	to	bring	even	more	ideas	about	what	is	and	isn’t	possible.	As
a	result,	brutal	prioritization	is	a	fact	of	life.

The	question	 isn’t	what	 is	 the	best	 list	 of	 ideas	 you	 can	 come	up	with	 for	 the
business—the	 question	 is	 what	 are	 the	 next	 three	 things	 the	 team	 is	 going	 to
execute	on	and	nail.

Phasing	 is	 a	 crucial	 part	 of	 any	 entrepreneurial	 endeavor—most	 products	 and
companies	fail	not	for	lack	of	great	ideas,	but	based	on	mistaking	which	ones	are
critical	to	execute	on	first	and	which	can	wait	until	later.

Personally,	I	don’t	believe	linear	prioritization	is	effective	in	the	long	term.	I’ve

written	a	 separate	post	on	product	prioritization	called	The	Three	Buckets	 that
explains	the	process	that	I	advocate.

You	should	be	able	to	ask	any	product	manager	who	has	been	on	the	job	for	two
weeks	for	a	prioritized	list	of	the	projects	their	team	is	working	on,	with	a	clear
rationale	for	prioritization	that	the	entire	team	understands	and	supports.

Responsibility	#3:	Execution
Product	managers,	in	practice,	actually	do	hundreds	of	different	things.

In	the	end,	product	managers	ship,	and	that	means	that	product	managers	cover
whatever	 gaps	 in	 the	 process	 that	 need	 to	 be	 covered.	 Sometimes	 they	 author
content.	 Sometimes	 they	 cover	 holes	 in	 design.	 Sometimes	 they	 are	 QA.
Sometimes	 they	 do	 PR.	 Anything	 that	 needs	 to	 be	 done	 to	make	 the	 product
successful	they	do,	within	the	limits	of	human	capability.

However,	there	are	parts	of	execution	that	are	massively	important	to	the	team,
and	without	them,	execution	becomes	extremely	inefficient:
	

Product	specification	–	the	necessary	level	of	detail	to	ensure	clarity	about
what	the	team	is	building.
Edge	case	decisions	–	very	often,	unexpected	and	complicated	edge	cases
come	 up.	 Typically,	 the	 product	manager	 is	 on	 the	 line	 to	 quickly	 triage
those	decisions	for	potentially	ramifications	to	other	parts	of	the	product.
Project	 management	 –	 there	 are	 always	 expectations	 for	 time/benefit
trade-offs	with	any	feature.	A	lot	of	these	calls	end	up	being	forced	during	a
production	cycle,	and	the	product	manager	has	to	be	a	couple	steps	ahead	of
potential	issues	to	ensure	that	the	final	product	strikes	the	right	balance	of
time	to	market	and	success	in	the	market.
Analytics	–	in	the	end,	the	team	largely	depends	on	the	product	manager	to
have	run	the	numbers,	and	have	the	detail	on	what	pieces	of	the	feature	are
critical	 to	 hitting	 the	 goals	 for	 the	 feature.	 They	 also	 expect	 the	 product
manager	 to	 have	 a	 deep	 understanding	 of	 the	 performance	 of	 existing
features	(and	competitor	features),	if	any.

Make	Things	Happen
In	 the	 end,	great	product	managers	make	 things	happen.	Reliably,	 and	without

fail,	you	can	always	tell	when	you’ve	added	a	great	product	manager	to	a	team
versus	a	mediocre	one,	because	very	quickly	 things	 start	happening.	Bug	 fixes
and	feature	fixes	start	shipping.	Crisp	analysis	of	the	data	appears.	Projects	are
re-prioritized.	And	within	short	order,	 the	key	numbers	start	moving	up	and	 to
the	right.

Be	a	great	product	leader.

This	 essay	 originally	 appeared	 on	 http://blog.adamnash.com/2011/12/16/be-a-
great-product-leader/.

Sachin	Rekhi:	The	Inputs	to	a	Great	Product
Roadmap
Sachin	Rekhi	 is	a	serial	entrepreneur	with	a	product	management	background.
He	founded	Connected	(acquired	by	LinkedIn),	Feedera	(acquired	by	LinkedIn),
and	Anywhere.fm	(acquired	by	imeem).	He	is	now	a	group	product	manager	at
LinkedIn	and	has	also	worked	as	a	program	manager	for	Microsoft.
I’m	often	asked	how	I	think	about	coming	up	with	the	product	roadmap	for	an
upcoming	release.	To	help	answer	this,	I	thought	I’d	share	how	my	team	recently
went	 about	 thinking	 through	 the	 roadmap	 for	 an	 upcoming	 product	 we’re
working	on.

Analysis	of	existing	usage	metrics
When	you’re	innovating	on	top	of	an	existing	product,	the	best	place	to	start	is
by	 conducting	 an	 in-depth	 analysis	 of	 the	 existing	 usage	 patterns	 of	 your
product.	Understanding	at	 a	high	 level	 the	 features	 that	are	most	used	will	 tell
you	where	further	investment	may	be	justified.	Low	usage	features	also	give	you
insights	 into	 what	 might	 need	 a	 redesign	 or	 need	 to	 be	 removed	 altogether.
Diving	into	flow	analysis	also	helps	you	understand	what	optimizations	could	be
made	to	reduce	friction	in	the	current	experience.

User	interviews	to	understand	audience	pain	points
Great	products	provide	solutions	 to	great	problems,	so	 it’s	always	 important	 to
ensure	you’re	solving	 the	problems	most	 top	of	mind	for	your	 target	audience.
The	best	way	I’ve	 found	 to	 really	understand	 these	pain	points	 is	 through	user
interviews	 seeking	 to	 understand	your	 audience’s	motivations,	 daily	workflow,
existing	tools,	current	frustrations,	and	more.	The	focus	here	should	be	problem
space	more	 than	 solution	 space	 to	 really	 get	 at	 what	 problems	would	warrant
product	solutions.

Aggregation	of	customer	feedback	&	support	requests
Users	 are	 constantly	 reaching	 out	 to	 creators	 of	 products	 with	 feature
suggestions,	 support	 requests,	 complaints,	 and	more.	 It’s	valuable	 to	 spend	 the
time	to	aggregate	this	feedback	to	understand	trends	amongst	your	user	base	and
what	areas	might	be	worth	investing	in.

In-depth	look	at	competition
Taking	a	look	at	other	players	in	the	space	to	see	what’s	working	for	them	and
what	isn’t	is	another	great	source	of	product	ideas	for	your	roadmap.	Using	the
products,	reviewing	the	product’s	user	forums,	and	reading	product	and	industry
reviews	 is	 a	 great	 way	 to	 uncover	 what’s	 most	 interesting	 about	 your
competition.	 While	 it’s	 important	 to	 play	 your	 own	 game	 compared	 to	 your
competition,	it’s	nonetheless	an	important	source	of	input	to	consider.

Commercialization	of	internal	innovation
Oftentimes	your	product	is	a	part	of	the	overall	suite	of	offerings	your	company
provides.	Each	product	tends	to	innovate	on	their	own	dimensions	and	bring	to
market	what’s	most	 important	for	 their	audience	and	product	area.	Nonetheless
oftentimes	there	is	a	significant	opportunity	to	bring	similar	innovations	to	your
target	audience	or	product	area.	I	thus	find	it	helpful	to	stay	abreast	of	the	latest
releases	from	other	company	products	to	see	what	might	be	leveragable	in	your
own	product	area.

Audience	surveys	to	understand	feature	prioritization
Once	you’ve	contemplated	a	set	of	potential	features,	it’s	often	helpful	to	survey
a	 portion	 of	 your	 existing	 or	 potential	 users	 to	 help	 prioritize	 these	 features
against	 each	 other.	 Leveraging	 conjoint	 analysis	 can	 help	 get	 at	 the	 relative
importance	 of	 each	 of	 your	 features	 to	 better	 understand	 which	 are	 worth
investing	in.

These	various	inputs	help	inform	your	product	roadmap	by	helping	you	discover
key	themes	across	the	various	inputs	that	may	be	critical	areas	to	attack	in	your
next	product	release.	However,	it’s	important	to	keep	in	mind	that	developing	the
right	product	 roadmap	remains	as	much	art	as	 it	 is	 science.	While	 these	 inputs
can	help	inform	your	potential	roadmap,	it’s	the	creative	synthesis	of	these	that
ultimately	result	in	a	great	roadmap.

This	 essay	 originally	 appeared	 at
http://www.sachinrekhi.com/blog/2013/09/23/the-inputs-to-a-great-product-
roadmap.

Ken	Norton:	How	to	Hire	a	Product	Manager
Ken	Norton	is	a	partner	at	Google	Ventures.	Before	that,	he	was	a	group	product
manager	at	Google.	He	joined	Google	 in	2006	with	 the	acquisition	of	JotSpot,
where	he	was	vice	president	of	product.	Before	 that,	 he	was	 senior	director	of
product	management	at	Yahoo.
It’s	been	a	while	since	I	was	hiring	at	a	startup,	and	recruiting	at	a	startup	is	very
different	 from	 hiring	 at	 a	 big	 company.	 At	 Yahoo!	 Search,	 it	 seemed	 like	 we
were	constantly	hiring.	I	did	an	average	of	5-8	interviews	a	week.	It	was	a	never-
ending	drumbeat	of	resumes,	interviews,	and	offer	letters.	Now,	I	wasn’t	always
the	hiring	manager.	I	only	hired	a	handful	of	product	managers	in	my	time	there.
But	 somebody	was	 always	hiring	 a	product	manager	 and	 I	was	usually	on	 the
interview	 team.	 The	 first	 thing	 you	 notice	 at	 a	 big	 company	 is	 the	 amount	 of
specialization.	 At	 a	 startup,	 everyone	 does	 a	 little	 of	 everything,	 so	 you	 need
strong	generalists.	More	importantly,	it’s	hard	to	predict	the	future,	so	you	need
people	 who	 can	 adapt.	 You	 might	 think	 you’re	 hiring	 somebody	 to	 work	 on
something	specific,	but	that	something	might	change	in	a	few	months.	It	doesn’t
work	 that	 way	 at	 big	 companies.	 Usually	when	 you’re	 hiring	 you	 have	 avery
specific	 role	 in	mind,	 and	 the	 likelihood	 that	 that	 responsibility	will	 change	 is
low.	 Lots	 of	 people	 were	 hired	 at	 Yahoo!	 that	 probably	 wouldn’t	 have	 been
appropriate	at	a	startup.	 I	 recall	a	 lot	of	post-interview	conversations	 that	went
something	like	this	-	“well,	I’m	not	sure	they’re	the	perfect	candidate,	but	they
do	seem	suited	for	this	very	specific	role,	so	let’s	hire	them.”	That	may	work	fine
at	a	big	company,	but	it’s	deadly	thinking	at	a	startup.

I	started	my	career	as	an	engineer	and	advanced	pretty	quickly	into	engineering
management.	During	the	bubble,	I	probably	hired	over	one	hundred	engineers.	I
learned	 a	 lot	 about	 hiring,	mostly	 by	making	mistakes.	When	 I	 transitioned	 to
product	management	I	was	able	to	apply	some	of	my	experience	hiring	technical
people,	but	I	also	learned	a	whole	new	set	of	lessons.	Last	week	a	friend	called
to	 say	 he	 needed	 to	 hire	 a	 product	manager	 and	wanted	my	 advice.	 I	 realized
there’s	not	a	 lot	of	good	information	out	 there	about	 interviewing	PMs	(there’s
not	a	lot	of	good	information	about	product	management	in	general).	More	to	the
point,	there’s	not	a	lot	about	what	you	should	look	for	in	a	product	manager	no
matter	 what	 kind	 of	 environment	 you’re	 in	 -	 startup	 or	 big	 company.	 So	 I
thought	I’d	pull	together	some	of	what	I	learned.

Remember	buddy,	nobody	asked	you	to	show	up
Product	management	may	be	the	one	job	that	the	organization	would	get	along
fine	without	 (at	 least	 for	 a	 good	while).	Without	 engineers,	 nothing	would	get
built.	Without	sales	people,	nothing	is	sold.	Without	designers,	the	product	looks
like	crap.	But	in	a	world	without	PMs,	everyone	simply	fills	in	the	gap	and	goes
on	with	their	lives.	It’s	important	to	remember	that	-	as	a	PM,	you’re	expendable.
Now,	 in	 the	 long	 run	 great	 product	management	 usually	makes	 the	 difference
between	winning	and	losing,	but	you	have	to	prove	it.	Product	management	also
combines	elements	of	lots	of	other	specialties	-	engineering,	design,	marketing,
sales,	 business	 development.	Product	management	 is	 a	weird	discipline	 full	 of
oddballs	and	 rejects	 that	never	quite	 fit	 in	anywhere	else.	For	my	part,	 I	 loved
the	technical	challenges	of	engineering	but	despised	the	coding.	I	 liked	solving
problems,	but	I	hated	having	other	people	tell	me	what	 to	do.	I	wanted	to	be	a
part	of	the	strategic	decisions,	I	wanted	to	own	the	product.	Marketing	appealed
to	my	creativity,	but	I	knew	I’d	dislike	being	too	far	away	from	the	technology.
Engineers	respected	me,	but	knew	my	heart	was	elsewhere	and	generally	thought
I	 was	 too	 “marketing-ish.”	 People	 like	 me	 naturally	 gravitate	 to	 product
management.

1.	Hire	all	the	smart	people
So	what	do	I	 look	for	in	a	PM?	Most	importantly,	raw	intellectual	horsepower.
I’ll	 take	a	wickedly	smart,	 inexperienced	PM	over	one	of	average	 intellect	and
years	 of	 experience	 any	 day.	 Product	 management	 is	 fundamentally	 about
thinking	on	your	feet,	staying	one	step	ahead	of	your	competitors,	and	being	able
to	 project	 yourself	 into	 the	 minds	 of	 your	 colleagues	 and	 your	 customers.	 I
usually	 ask	 an	 interview	 candidate	 a	 series	 of	 analytical	 questions	 to	 gauge
intelligence	 and	 problem-solving	 ability.	Generally	 I’ll	 ask	 questions	 until	 I’m
sure	the	candidate	is	smarter	than	me.	For	some	reason,	lots	of	people	I	know	are
reluctant	 to	 do	 that.	They	 argue	 that	 it’s	 insulting	 to	 the	 candidate.	 I	 think	 the
right	candidate	will	relish	the	challenge.	In	fact,	that’s	the	first	test	-	how	do	they
react	when	I	say	“I’d	like	to	pose	some	theoretical	problems,	is	that	okay?”	The
best	of	the	bunch	are	usually	bouncing	out	of	their	chairs	with	excitement.	The
super	smart	sometimes	counter	with	questions	of	their	own.

2.	Strong	technical	background
Some	managers	 I’ve	 known	 insist	 on	 hiring	 only	 PMs	with	 computer	 science
degrees.	 I’m	 not	 as	 snobby	 -	 maybe	 it’s	 my	 own	 liberal	 arts	 undergraduate

education	-	but	I	do	tend	to	favor	people	who’ve	been	in	technical	roles.	Having
a	 solid	 engineering	 background	 gives	 a	 PM	 two	 critical	 tools	 -	 the	 ability	 to
relate	 to	 engineers	 and	 a	 grasp	 of	 the	 technical	 details	 driving	 the	 product.	 It
depends	on	the	product	of	course	-	a	PM	working	on	low-level	developer	APIs	is
bound	 to	 need	 more	 technical	 chops	 than	 one	 working	 on	 the	 front-end	 of	 a
personals	 web	 site.	 But	 the	 basic	 principle	 applies	 -	 product	 managers	 with
technical	backgrounds	will	have	more	success	conveying	product	 requirements
to	 engineers	 and	 relaying	 complicated	 details	 to	 non-technical	 colleagues	 and
customers.	That	 said,	 there	 are	 pitfalls	 you	need	 to	 avoid.	Most	 importantly,	 a
PM	who’s	a	former	engineer	needs	to	realize	that	he	or	she	is	just	that	-	a	former
engineer.	 PMs	 who	 come	 from	 engineering	 and	 still	 try	 to	 take	 charge	 of
technical	decisions	and	implementation	details	will	crash	spectacularly.	For	that
reason,	I	like	hiring	technical	people	who’ve	already	made	the	move	to	product
management	 at	 a	 previous	 job.	 They’ve	 already	 gone	 through	 the	 challenging
adaptation	 period	 and	 by	 checking	 references	 you	 can	 get	 a	 feel	 for	 how	well
they’ve	 evolved.	 I	 won’t	 bore	 with	 you	 with	 interview	 questions	 to	 evaluate
technical	 competency.	 They	 depend	 on	 the	 skill	 set	 and	 there	 are	 hundreds	 of
web	sites	 that	give	good	 tips	 for	hiring	engineers.	 Instead,	here	are	some	good
questions	for	gauging	how	well	a	technical	PM	has	adapted	to	the	role	and	their
ability	to	work	with	engineers:
	

Why	did	you	decide	to	move	from	engineering	to	product	management?
What	is	the	biggest	advantage	of	having	a	technical	background?
What	is	the	biggest	disadvantage?
What	 was	 the	 biggest	 lesson	 you	 learned	 when	 you	 moved	 from
engineering	to	product	management?
What	do	you	wish	you’d	known	when	you	were	an	engineer?
How	do	you	earn	the	respect	of	the	engineering	team?

3.	“Spidey-sense”	product	instincts	and	creativity
This	next	category	is	highly	subjective,	difficult	to	evaluate,	and	extraordinarily
important.	I	am	a	strong	believer	that	certain	people	are	born	with	innate	product
instincts.	 These	 people	 just	 know	 what	 makes	 a	 great	 product.	 They’re	 not
always	right,	but	their	instincts	usually	point	in	the	right	direction.	They	tend	to
be	 passionate	 advocates	 of	 a	 point	 of	 view,	 sometimes	 to	 the	 chagrin	 of	 their
colleagues.	 I’ve	 had	 the	 good	 fortune	 to	 work	 with	 a	 good	 number	 of	 these
people,	and	it’s	an	essential	trait	in	product	managers.	And	it	can	be	tuned,	but	it

can’t	 be	 learned.	 Product	 management,	 especially	 in	 highly	 dynamic
environments	like	the	web,	involves	lots	of	small	decisions.	Sure,	there’s	a	lot	of
big	thinking	and	strategy.	But	it’s	the	little	decisions	where	a	great	PM	distances
him	 or	 herself	 from	 a	 decent	 one.	 You	 know	 they’ve	 got	 the	 “spidey-sense”
product	 instinct	 when	 they	 suggest	 approaches	 that	 nobody	 on	 the	 team	 has
thought	 of,	 but	 immediately	 strike	 everyone	 as	 obvious	when	 they	 hear	 them.
Evaluating	product	instinct	 in	an	interview	is	challenging	at	best.	But	it	can	be
done.	One	 thing	I	always	do	 is	check	 to	see	 if	 the	candidate	has	accomplished
the	following	tasks	during	a	one-hour	interview:
	

Independently	echoed	some	of	my	own	concerns	about	my	product	-	if
you’re	a	good	PM,	you’ve	got	a	bunch	of	things	that	worry	you	about	your
own	 product.	 Maybe	 they’re	 UI	 shortcomings,	 missing	 features,	 or
architecture	flaws	that	need	to	be	addressed.	They’re	things	you	know	need
to	 be	 fixed.	 At	 least	 some	 of	 these	 should	 be	 obvious	 to	 an	 intelligent
outsider	 with	 strong	 product	 instincts.	 I	 look	 for	 that	 moment	 in	 the
interview	when	I	smile,	nod,	and	say	“yeah,	I	know	-	that’s	been	driving	us
crazy	too.”
Taught	me	 something	 new	 about	my	product	 -	 it	 could	 be	 an	 obvious
improvement	that	I’d	never	considered,	a	new	idea	for	positioning	against	a
competitor,	 or	 a	 problem	 they	 encountered	 that	 needs	 to	 be	 addressed.
When	 I	 learn	 something	 from	a	candidate,	 I	know	 two	 things:	 (1)	 they’re
not	 afraid	 to	 speak	 critically,	 and	 (2)	 they’re	 probably	 smarter	 than	me.	 I
want	both	in	a	product	manager.
Turned	 me	 on	 to	 something	 new	 and	 interesting	 -	 people	 with	 great
product	instincts	tend	to	notice	great	products	before	everyone	else.	If	I’m
interviewing	a	top-notch	candidate,	I	usually	walk	away	having	discovered
something	new	and	innovative.

Here	are	some	good	questions	for	judging	product	instincts:
	

Tell	me	about	a	great	product	you’ve	encountered	recently.	Why	do	you	like
it?	 [By	 the	 way,	 it	 drives	 me	 crazy	 when	 candidates	 name	 one	 of	 my
products	in	an	interview.	I	had	a	hard	time	hiring	anybody	at	Yahoo!	who
told	me	the	coolest	product	they’d	come	across	recently	was	Yahoo!	Good
grief.]
What’s	 made	 [insert	 product	 here]	 successful?	 [I	 usually	 pick	 a	 popular

product,	 like	 the	 iPod	 or	 eBay,	 that’s	 won	 over	 consumers	 handily	 in	 a
crowded	market.]
What	do	you	dislike	about	my	product?	How	would	you	improve	it?
What	problems	are	we	going	to	encounter	in	a	year?	Two	years?	Ten	years?
How	do	you	know	a	product	is	well	designed?
What’s	one	of	the	best	ideas	you’ve	ever	had?
What	is	one	of	the	worst?
How	do	you	know	when	to	cut	corners	to	get	a	product	out	the	door?
What	lessons	have	you	learned	about	user	interface	design?
How	do	you	decide	what	not	to	build?
What	was	your	biggest	product	mistake?
What	aspects	of	product	management	do	you	find	the	least	interesting	and
why?
Do	you	consider	yourself	creative?

4.	Leadership	that’s	earned
Product	managers	 are	usually	 leaders	 in	 their	 organizations.	But	 they	 typically
don’t	have	direct	line	authority	over	others.	That	means	they	earn	their	authority
and	lead	by	influence.	Leadership	and	interpersonal	skills	are	critical	for	product
management.	There	are	a	thousand	books	about	leadership,	so	I	won’t	turn	this
post	 into	 a	 treatise	on	 the	 subject	 (most	 of	 the	books	 are	 crap	 anyway).	 I	 find
reference	 checks	 to	 be	 the	 most	 effective	 way	 to	 measure	 leadership	 skills,
especially	references	that	involve	peers	and	individual	contributors	who	worked
with	 -	 but	 did	not	 report	 to	 -	 the	 candidate.	But	 here	 are	 a	 few	questions	 I’ve
used	in	the	past:
	

Is	consensus	always	a	good	thing?
What’s	the	difference	between	management	and	leadership?
What	kinds	of	people	do	you	like	to	work	with?
What	types	of	people	have	you	found	it	difficult	to	work	with?
Tell	 me	 about	 a	 time	 when	 a	 team	 didn’t	 gel.	 Why	 do	 you	 think	 that
happened,	and	what	have	you	learned?
How	do	you	get	a	team	to	commit	to	a	schedule?
What	would	somebody	do	to	lose	your	confidence?
Do	you	manage	people	from	different	functions	differently?	If	so,	how?
What	have	you	learned	about	saying	no?
Who	has	the	ultimate	accountability	for	shipping	a	product?

Have	you	ever	been	 in	a	situation	where	your	 team	has	 let	you	down	and
you’ve	had	to	take	the	blame?
How	has	your	tolerance	for	mistakes	changed	over	the	years?
Which	do	you	like	first,	the	good	news	or	the	bad	news?
What’s	your	approach	to	hiring?

5.	Ability	to	channel	multiple	points-of-view
Being	a	product	manager	requires	wearing	multiple	hats.	I	often	joke	that	much
of	the	time	your	job	is	to	be	the	advocate	for	whoever	isn’t	currently	in	the	room
-	the	customer,	engineering,	sales,	executives,	marketing.	That	means	you	need
to	 be	 capable	 of	 doing	 other	 people’s	 jobs,	 but	 smart	 enough	 to	 know	 not	 to.
Great	 PMs	 know	 how	 to	 channel	 different	 points-of-view.	 They	 play	 devil’s
advocate	 a	 lot.	 They	 tend	 to	 be	 unsatisfied	 with	 simple	 answers.	 In	 one
conversation	 they	 might	 tell	 you	 the	 requirements	 don’t	 seem	 technically
feasible	 and	 in	 the	 next	 breath	 ask	 how	 any	 of	 this	 will	 make	 sense	 to	 the
salespeople.	There’s	one	obvious	way	 to	evaluate	a	candidate’s	ability	 to	 think
through	 a	 problem	 from	multiple	 angles	 -	 gets	 lots	 of	 people	 in	 the	 interview
process.	 I	 always	 insist	 that	 at	 a	 minimum,	 representatives	 from	 engineering,
design,	and	marketing	meet	a	potential	PM	candidate.	Depending	on	the	specific
role,	 this	 list	 can	 grow	 -	 pre-sales	 engineering,	 support,	 developer	 relations,
business	 development,	 legal,	 or	 customers	 themselves.	Ultimately	 anyone	who
will	 be	 working	 with	 this	 person	 should	 meet	 them.	 Note	 that	 I	 didn’t	 say
everyone	needs	to	meet	them.	One	carefully	selected	representative	of	each	key
function	will	suffice.	And	it	also	doesn’t	mean	everybody	has	to	give	a	thumbs-
up	 -	 it’s	 hard	 to	 build	 consensus	 in	 an	 interview	 process	 as	 the	 list	 of
interviewers	grows,	so	consider	the	feedback	appropriately.	But	nobody	will	be
able	 to	 judge	how	well	a	product	manager	understands	 the	sales	process	 like	a
salesperson.	I	also	strongly	recommend	that	you	give	specific	instructions	to	the
interviewers,	like	“I’d	like	you	to	see	how	well	this	person	would	understand	the
issues	you	face	in	channel	development,	and	how	we’ll	they’d	support	you	in	the
field.	“Here	are	some	specific	questions	that	I	use	(these	are	just	examples,	feel
free	to	replace	the	functional	names):
	

How	have	you	learned	to	work	with	sales?
What	is	the	best	way	to	interface	with	customers?
What	makes	marketing	tick?
How	do	you	know	when	design	is	on	the	right	track?

How	should	a	product	manager	support	business	development?
What	have	you	learned	about	managing	up?
What’s	the	best	way	to	work	with	the	executives?

6.	Give	me	someone	who’s	shipped	something
This	last	characteristic	may	be	the	easiest	to	evaluate.	Unless	the	position	is	very
junior,	 I’ll	usually	hire	product	managers	who’ve	actually	 shipped	a	product.	 I
mean	 from	 start	 to	 finish,	 concept	 to	 launch.	Nothing	 is	 a	 better	 indication	 of
someone’s	 ability	 to	 ship	 great	 products	 than	 having	 done	 it	 before.	 Past
performance	 is	 an	 indication	of	 future	 success.	Even	better,	 it	gives	 something
tangible	to	evaluate	in	a	sea	of	intangibles.	When	checking	references,	I	always
make	sure	to	talk	to	important	colleagues	from	a	previous	project,	especially	the
PM’s	 manager	 and	 their	 engineering	 and	 sales	 or	 marketing	 counterparts.
(Incidentally,	these	rules	are	ordered	for	a	reason,	and	as	I	mentioned	under	#1
I’ll	still	 take	a	brilliantly	smart	PM	over	a	dimmer	experienced	one	even	if	 the
former	hasn’t	shipped	before).

Note:	I	wrote	this	in	2005	when	I	was	at	JotSpot.	Google	acquired	JotSpot
in	2006.	Since	then,	I’ve	had	the	opportunity	to	work	with	some	marvelous
PMs	and	have	performed	200+	PM	interviews.	 I’m	sure	 that	my	opinions
have	 evolved,	 but	 the	 intervening	 years	 have	 only	 further	 reinforced	 the
characteristics	of	great	PMs.	I	occasionally	set	out	to	update	this	essay	but	I
always	decide	to	leave	it	as	is.

This	essay	originally	appeared	on
	https://www.kennethnorton.com/essays/productmanager.html.

Amazon	Leadership	Principles
The	following	leadership	principles	are	reprinted	from	amazon.com.	If	you
are	 applying	 for	 a	 job	 at	Amazon,	 you	 should	definitely	 read	 them.	They
might	 be	 useful	 for	 other	 companies	 as	well,	 since	many	 companies	 look
for	similar	attributes.

Whether	you	are	an	individual	contributor	or	 the	manager	of	a	 large	team,	you
are	an	Amazon	leader.	These	are	our	leadership	principles	and	every	Amazonian
is	guided	by	these	principles.

Customer	Obsession
Leaders	start	with	the	customer	and	work	backwards.	They	work	vigorously	to
earn	 and	 keep	 customer	 trust.	 Although	 leaders	 pay	 attention	 to	 competitors,
they	obsess	over	customers.

Ownership
Leaders	are	owners.	They	think	long	term	and	don’t	sacrifice	long-term	value	for
short-term	 results.	They	act	on	behalf	of	 the	entire	company,	beyond	 just	 their
own	team.	They	never	say	“that’s	not	my	job.”

Invent	and	Simplify
Leaders	 expect	 and	 require	 innovation	 and	 invention	 from	 their	 teams	 and
always	find	ways	to	simplify.	They	are	externally	aware,	look	for	new	ideas	from
everywhere,	and	are	not	 limited	by	“not	 invented	here.”	As	we	do	new	 things,
we	accept	that	we	may	be	misunderstood	for	long	periods	of	time.

Are	Right,	A	Lot
Leaders	are	right	a	lot.	They	have	strong	business	judgment	and	good	instincts.

Hire	and	Develop	the	Best
Leaders	 raise	 the	 performance	 bar	 with	 every	 hire	 and	 promotion.	 They
recognize	 exceptional	 talent,	 and	 willingly	 move	 them	 throughout	 the
organization.	Leaders	develop	 leaders	and	 take	seriously	 their	 role	 in	coaching
others.

Insist	on	the	Highest	Standards
Leaders	 have	 relentlessly	 high	 standards	 -	 many	 people	 may	 think	 these
standards	 are	 unreasonably	 high.	 Leaders	 are	 continually	 raising	 the	 bar	 and
driving	 their	 teams	 to	 deliver	 high	 quality	 products,	 services	 and	 processes.
Leaders	ensure	that	defects	do	not	get	sent	down	the	line	and	that	problems	are
fixed	so	they	stay	fixed.

Think	Big
Thinking	small	 is	a	self-fulfilling	prophecy.	Leaders	create	and	communicate	a
bold	 direction	 that	 inspires	 results.	 They	 think	 differently	 and	 look	 around
corners	for	ways	to	serve	customers.

Bias	for	Action
Speed	matters	in	business.	Many	decisions	and	actions	are	reversible	and	do	not
need	extensive	study.	We	value	calculated	risk	taking.

Frugality
We	try	not	 to	spend	money	on	 things	 that	don’t	matter	 to	customers.	Frugality
breeds	resourcefulness,	self-sufficiency,	and	invention.	There	are	no	extra	points
for	headcount,	budget	size,	or	fixed	expense.

Vocally	Self	Critical
Leaders	 do	 not	 believe	 their	 or	 their	 team’s	 body	 odor	 smells	 of	 perfume.
Leaders	 come	 forward	 with	 problems	 or	 information,	 even	 when	 doing	 so	 is
awkward	 or	 embarrassing.	 Leaders	 benchmark	 themselves	 and	 their	 teams
against	the	best.

Earn	Trust	of	Others
Leaders	are	sincerely	open-minded,	genuinely	listen,	and	are	willing	to	examine
their	strongest	convictions	with	humility.

Dive	Deep
Leaders	operate	at	all	levels,	stay	connected	to	the	details,	and	audit	frequently.
No	task	is	beneath	them.

Have	Backbone;	Disagree	and	Commit
Leaders	 are	 obligated	 to	 respectfully	 challenge	 decisions	 when	 they	 disagree,
even	when	 doing	 so	 is	 uncomfortable	 or	 exhausting.	 Leaders	 have	 conviction
and	are	tenacious.	They	do	not	compromise	for	the	sake	of	social	cohesion.	Once
a	decision	is	determined,	they	commit	wholly.

Deliver	Results
Leaders	focus	on	the	key	inputs	for	their	business	and	deliver	them	with	the	right
quality	and	 in	a	 timely	fashion.	Despite	setbacks,	 they	rise	 to	 the	occasion	and
never	settle.
	

•

Acknowledgements
	

Thank	you	to	everyone	who	has	supported	me	throughout	this	journey.

To	Paul	Unterberg,	Adam	Kazwell,	and	our	two	anonymous	candidates:	I	deeply
appreciate	your	being	willing	to	put	yourself	out	there	with	your	resumes.	Thank
you.

To	Fernando	Delgado,	Ashley	Carroll,	Brandon	Bray,	Thomas	Arend,	 Johanna
Wright,	 Lisa	 Kostova	 Ogata,	 Ian	 McAllister,	 Adam	 Nash,	 Sachin	 Rekhi,	 and
Ken	Norton:	Your	 contributions	 are	much	 appreciated	 by	me,	 Jackie,	 and	 our
readers.

To	all	my	PM	(and	related)	friends	and	colleagues	who	contributed	their	advice
and	feedback:	You	all	are	awesome.

To	 my	 husband	 John	 and	 his	 mother	 Donna:	 Thank	 you	 for	 your	 continuous
support	which	made	this	book	possible.

To	 my	 beautiful	 son,	 Davis:	 One	 day	 you’ll	 be	 big	 enough	 to	 read	 this,	 and
you’ll	know	how	much	you’re	loved.

GAYLE
	

Thank	you	to	my	loving	family.	My	father’s	dissatisfaction	with	the	long	lines	at
toll	 bridges	 became	 my	 first	 PM-interview-question	 practice.	 My	 husband
encouraged	 me	 throughout	 the	 book	 writing	 process.	 My	 cats	 always	 had	 a
helping	paw.

I’m	 immensely	 grateful	 to	 Steven	Sinofsky	 and	Marissa	Mayer	who	 hired	me
into	their	talented	PM	orgs	and	have	advanced	the	craft	of	product	management.
I’m	also	very	 thankful	 to	my	wonderful	managers:	Mike	Morton,	Tom	Stocky,
Jack	Menzel,	 Johanna	Wright,	 and	 Justin	 Rosenstein	 who	 have	 been	 amazing
mentors	and	role	models.

Thank	you	to	all	of	the	people	who	talked	to	me	about	their	experiences	as	PMs

and	 shared	 their	 advice.	 I	 was	 blown	 away	 by	 how	 many	 of	 you	 shared	 my
vision	for	 this	book	and	helped	 it	come	 into	being.	 I’d	especially	 like	 to	 thank
Shirin	Oskooi	for	helping	me	get	things	started,	Daniel	Dulitz	for	suggesting	the
section	on	 transitioning	from	designer	 to	PM,	Nundu	Janakiram	for	suggesting
the	section	on	PM	myths,	and	Chrix	Finne	for	connecting	me	to	lots	of	helpful
people.

JACKIE

	 ABOUT	THE	AUTHORS

Gayle	Laakmann	McDowell

	Gayle	Laakmann	McDowell	 is	 the	 founder	 /	CEO	of
CareerCup.com,	a	site	dedicated	to	preparing	for	tech	jobs.

She	has	performed	hundreds	of	 interviews	as	an	employee	at	Google,	coached
numerous	 software	 engineering	 and	 product	 manager	 candidates,	 and	 helped
many	 startups	 through	 their	 dev	 and	 PM	 acquisition	 interviews	 with	 top	 tech
companies.

Prior	 to	 CareerCup,	 she	 worked	 for	 Microsoft,	 Apple,	 and	 Google.	 Most
recently,	Gayle	 spent	 three	 years	 at	Google	 as	 a	 software	 engineer,	where	 she
was	 one	 of	 the	 company’s	 lead	 interviewers	 and	 served	 on	 Google’s	 hiring
committee.

This	 is	 Gayle’s	 third	 book.	 Her	 second	 book,	 The	 Google	 Resume,	 is	 a
comprehensive	book	offering	advice	on	how	anyone	can	prepare	for	a	role	at	a
top	tech	company.	Her	first	book,	Cracking	the	Coding	Interview,	is	a	deep	dive
into	coding	interviews	and	is	Amazon’s	best-selling	interview	book.

Gayle	 holds	 a	 bachelor’s	 and	 master’s	 degree	 in	 Computer	 Science	 from	 the
University	of	Pennsylvania	and	an	MBA	from	the	Wharton	School.

She	lives	in	Palo	Alto,	California.

facebook.com/gayle
twitter.com/gayle
technologywoman.com
quora.com/Gayle-Laakmann-McDowell

Jackie	Bavaro

	Jackie	Bavaro	is	a	product	manager	at	Asana,	a	leading
startup	that	builds	the	modern	productivity	software	for	teamwork	without	email
used	by	companies	 such	as	Dropbox,	Airbnb,	Uber,	Foursquare,	 and	Pinterest.
She	joined	as	the	company’s	first	product	manager	and	she	lead	the	team	through
their	public	launch,	the	launch	of	their	premium	product,	and	the	launch	of	their
product	for	larger	teams.

With	over	eight	years	of	experience	in	product	management,	she	has	also	worked
as	 a	 product	 manager	 at	 Google	 and	 as	 a	 program	 manager	 at	 Microsoft.	 At
Google,	 she	 joined	 as	 part	 of	 the	 elite	 Associate	 Product	 Manager	 (APM)
program	 and	 worked	 on	 Google	 Search,	 where	 notably	 she	 launched	 Place
Search	-	the	first	product	to	group	web	results	around	objects	in	the	real	world.
At	Microsoft,	 she	worked	 in	 the	Office	 group	 on	Windows	 SharePoint	 Server
where	she	launched	blogs	and	wikis	on	the	SharePoint	platform.

Jackie	has	 interviewed	over	100	PM	candidates	 in	both	phone	screens	and	on-
site	interviews,	reviewed	many	resumes,	and	sourced	numerous	candidates.	She
has	 advised	 many	 candidates	 on	 applying	 to	 become	 product	 managers	 and
finding	 the	 right	 company,	 which	 was	 part	 of	 the	 inspiration	 for	 writing	 this
book.

More	of	Jackie’s	writing	about	product	management	can	be	found	on	The	Art	of
Product	Management	 at	 http://pmblog.quora.com	where	 she	 delves	 into	 topics
like	 communication,	 building	 relationships	 with	 the	 team,	 and	 making	 data-
driven	decisions.

Jackie	 graduated	 from	 Cornell	 University	 with	 a	 double	 major	 in	 Computer
Science	and	Economics.

She	lives	in	San	Francisco,	California.

facebook.com/jackie.bavaro
twitter.com/jackiebo
pmblog.quora.com
quora.com/Jackie-Bavaro

		
	
	
	
	

good	luck,	folks.

	1. Introduction
	Why does this matter?
	Who are we?
	What now?

	2. The Product Manager Role
	What is a PM?
	Functions of a PM
	Top Myths about Product Management
	Project Managers and Program Managers

	3. Companies
	How the PM Role Varies
	Google
	Microsoft
	Apple
	Facebook
	Amazon
	Yahoo
	Twitter
	Startups

	4. Getting the Right Experience
	New Grads
	Making the Most of Career Fairs
	Do you need an MBA?
	Why Technical Experience Matters
	Transitioning from Engineer to Product Manager
	Transitioning from Designer to Product Manager
	Transitioning from Other Roles
	What Makes a Good Side Project?

	5. Career Advancement
	Tips and Tricks for Career Advancement
	Q & A: Fernando Delgado, Sr. Director, Product Management at Yahoo
	Q & A: Ashley Carroll, Senior Director of Product Management, DocuSign
	Q & A: Brandon Bray, Principal Group Program Manager, Microsoft
	Q & A: Thomas Arend, International Product Lead, Airbnb
	Q & A: Johanna Wright, VP at Google
	Q & A: Lisa Kostova Ogata, VP of Product at Bright.com

	6. Behind the Interview Scenes
	Google
	Microsoft
	Facebook
	Apple
	Amazon
	Yahoo
	Twitter
	Dropbox

	7. Resumes
	The 15 Second Rule
	The Rules
	Attributes of a Good PM Resume
	What to Include

	8. Real Resumes: Before & After
	Richard Wang (Anonymized)
	Paul Unterberg
	Amit Agarwal (Anonymized)
	Adam Kazwell

	9. Cover Letters
	Elements of a Good PM Cover Letter
	The Cover Letter Template
	A Great Cover Letter

	10. Company Research
	The Product
	The Strategy
	The Culture
	The Role
	The Questions

	11. Define Yourself
	“Tell Me About Yourself” (The Pitch)
	“Why do you want to work here?”
	“Why should we hire you?”
	“Why are you leaving your current job?”
	“What do you like to do in your spare time?”
	“Where do you see yourself in five years?”
	“What are your strengths and weaknesses?”
	Sample Strengths
	Sample Weaknesses

	12. Behavioral Questions
	Why These Questions Are Asked
	Preparation
	Follow-Up Questions
	Types of Behavioral Questions

	13. Estimation Questions
	Approach
	Numbers Cheat Sheet
	Tips and Tricks
	Example Interview
	Sample Questions

	14. Product Questions
	About the Product Question
	Type 1: Designing a Product
	Type 2: Improving a Product
	Type 3: Favorite Product
	Preparation
	Tips and Tricks
	Sample Questions

	15. Case Questions
	The Case Question: Consultants vs. PMs
	What Interviewers Look For
	Useful Frameworks
	Product Metrics
	Interview Questions

	16. Coding Questions
	Who Needs To Code
	What You Need To Know
	How You Are Evaluated
	How To Approach
	Developing an Algorithm
	Additional Questions
	Solutions

	17. Appendix
	Ian McAllister: Top 1% PMs vs. Top 10% PMs
	Adam Nash: Be a Great Product Leader
	Sachin Rekhi: The Inputs to a Great Product Roadmap
	Ken Norton: How to Hire a Product Manager
	Amazon Leadership Principles

	18. Acknowledgements
	Gayle Laakmann McDowell
	Jackie Bavaro

